STORMWATER MANAGEMENT REPORT

for

West Windsor-Plainsboro School District

Additions and Renovations to West Windsor-Plainsboro High School South Block 17.13, Lot 2

> Township of West Windsor Mercer County, New Jersey

> > Prepared by:

www.vcea.org

4 AAA Drive, Suite 103 Hamilton, New Jersey 08691 (609)-689-1100

Allal

Herbert Seeburger, PE NJ Professional Engineer License #47487

February 2020 Revised April 2020 VCEA #1808-WW-01

TABLE OF CONTENTS

I.	Introduction
II.	Existing Site Conditions2
III.	Proposed Site Conditions4
IV.	Design Methodology5
V.	Runoff Rate Reduction Performance6
VI.	Groundwater Recharge8
VII.	Temporary Sediment Basin8
VIII.	Stability Analysis8
IX.	Conclusion9

APPENDIX

- Soil Survey
- USGS and Tax Maps
- Existing Condition Hydrograph Summary Reports for NJDEP WQ, 2yr, 10yr & 100yr Events (Hydrographs created using HydroCAD 10.1)
- Proposed Conditions Hydrograph Summary Reports for NJDEP WQ, 2yr, 10yr & 100yr Events (Hydrographs created using HydroCAD 10.1)
- Stormwater Basin Report Soil Investigation and Permeability Report
- Stormwater Conveyance Calculations (Pipe Sizing)
- Riprap Apron Data Sheet
- Emergency Spillway Calc Sheet
- Basin Summary Form
- Groundwater Recharging
- Groundwater Mounding
- Stormwater Management Operation and Maintenance Manual
- Existing Condition Drainage Area Map
- Proposed Condition Drainage Area Map
- Inlet Drainage Area Map

I. INTRODUCTION

This project was designed to accommodate the stormwater runoff conditions that occur as a result of the building additions and the expansion of the existing parking lot and drop off areas at West Windsor-Plainsboro High School South. The construction will increase the existing parking lot from 296 parking spaces to 305 parking spaces, two future building additions and an expanded student drop off area. The subject site is located on Clarksville-Grovers Mill Road (C.R. # 638) in the Township of West Windsor, Mercer County, New Jersey and is identified as Block 17.13, Lot 2 on the Township of West Windsor Tax Map. The subject site is currently operating as a High School.

The scope of this study focuses on the overall drainage conditions resulting from the proposed site improvements. For the purpose of this report, the stormwater management design will only focus on the proposed improvements. The proposed development will disturb over an acre of land and result in an increase of 1.57 acres of impervious surface.

The primary design constraints for this project are based on requirements established in the Township of West Windsor Design Standards, Mercer County Design Standards, Delaware Raritan Canal Commission (DRCC) and N.J.A.C. 7:8. More specifically, the stormwater management design will serve to maintain existing drainage patterns to the maximum extent practical and reduce proposed runoff rates when compared to pre-development runoff rates. The proposed project will disturb over 1 acre and proposed impervious coverage will be increased by more than ¼ acre; therefore, the project meets the definition of a "major development" under N.J.A.C. 7:8.

II. EXISTING SITE CONDITIONS

The subject site consists of approximately 50.51 acres. The area of proposed improvement is located within the northern portion of the property at the intersection of Clarksville-Grovers Mill Road (C.R. # 638) and Princeton-Hightstown Road (C.R. # 571). The area for the building additions and student drop off area is already developed. The northern parking lot will expand into an existing grass field. The plan proposes for an above ground infiltration basin along Clarksville Road. The proposed improvements impacting impervious surface on the site will be limited to an area of approximately 8.40 acres, which is the area of study this report will focus on. This area currently consists of 4.452 acres of impervious surface area, including roof area.

SOIL TYPE	SOIL TYPE NAME	HYDRAULIC SOIL GROUP			
GKAWOB	Glassboro adnd Woodstown sandy loams, 0 to 5 percent slopes	A/D			
MBYB	Mattapex and Bertie loams, 0 to 5 percent slopes	С			
OrthA	Orthello silt loams, 0 to 2 percent slopes, northern coastal plain	C/D			
Port A	Portsmouth variant silt loam, 0 to 2 percent slopes	B/D			
SacA	Sassafras sandy loam, 0 to 2 percent slopes, northern coastal plain	В			
SacB	Sassafras sandy loam, 2 to 5 percent slopes, northern coastal plain	В			
SacC	Sassafras sandy loam, 5 to 1o percent slopes, northern coastal plain	В			

Based on the Mercer County Soil Survey, the soil types native to the site include:

The site has been evaluated using the TR-55 'Urban Hydrology for Small Watersheds' standards. The disturbed area on this site has two drainage sheds; the northern portion beyond the parking lot which drains to Princeton Hightstown Road. The main drainage area will convey stormwater to the central study point which is part of the existing internal stormwater system. Both drainage areas ultimately discharge to the Canoe Brook. Below is a description of the drainage sub-watershed areas as depicted on the Existing Drainage Area Map:

<u>Central Study Point</u>: This study point represents the location where all runoff from the drainage area is collected via an existing stormwater sewer infrastructure and discharged into an existing manhole and a 24 inch CMP pipe. This point is where the peak flow generated by the development will be evaluated and runoff will be controlled to ensure that the max capacity of the pipe will not be exceeded. This study point has been analyzed to show compliance with the applicable NJDEP, Mercer County, DRCC and West Windsor Township regulations.

<u>Northern Study Point:</u> This study points represents the drainage area which discharges uncontrolled out to the County stormwater conveyance system on Princeton-Hightstown Road (C.R. # 571). Impervious and pervious areas contribute to this drainage area.

III. PROPOSED SITE CONDITIONS

The proposed site improvements will result in an overall increase in impervious coverage of 1.571 acres. The proposed design serves to match the existing drainage patterns to the maximum extent practical. The school district has a future high school expansion plan that includes the potential of a third addition that will connect the front two proposed additions. Although it is unknown when this will be happening, we have included this area (16,807SF) in the sizing of the basin which is also included in the 1.571 acres of increased impervious coverage. The site has been evaluated using the TR-55 'Urban Hydrology for Small Watersheds' standards and with the following proposed drainage sub-watershed areas as depicted on the Proposed Drainage Area Map.

<u>Northern Study Point</u>: This study points represents the drainage area which flows uncontrolled to the County conveyance stormwater system on Princeton-Hightstown Road (C.R. #571). As part of this construction project, the total impervious and pervious areas consisting of sidewalk, pavement and grassed areas contributing to this drainage area will be reduced. The peak runoff rates and volumes have been reduced because the total area and amount of impervious surface in the drainage area thus the drainage area meets all of the requirements.

<u>Central Study Point:</u> This study area consists of the developed area in the subject site located within the north and northwestern portion of the property including the proposed parking areas, student drop off area, sidewalks and future building additions. The construction plans show two proposed building additions but the proposed drainage area map shows three. The two shown on the plan will be constructed as phase 2 of this project. There is no time line or definite plan to install the third building addition as of now. The impervious area generated by the third building addition was included in the calculations as a precaution. Runoff generated by the parking lot, and landscape/grass open space areas will be collected by various on-site inlets, routed through an aboveground infiltration basin, and ultimately discharges back into the existing 24-inch pipe and stormwater system. This existing 24-inch CMP pipe runs under the existing high school. There are two small grass areas with a size of 8,421 square feet that are not treated prior to construction and will not be treated post construction. This area has been included in flow calculation for the 24-inch CMP pipe and labeled as bypass. A minimum time of concentration of 10 minutes has been utilized for impervious coverages within this drainage area.

IV. DESIGN METHODOLOGY

The design intention of the proposed stormwater management facilities for this project is to provide measures as required to address applicable aspects of the Township of West Windsor Design Standards, Mercer County Design Standards, DRCC, New Jersey Soil Erosion and Sediment Control Standards, and N.J.A.C 7:8. In order to prepare the stormwater management design for the subject project, an initial investigation of the property was performed. On-site review of the tract was performed by Van Cleef Engineering Associates to verify existing site conditions and land cover characteristics.

Based upon our review of the existing site conditions and the Site Survey prepared by Van Cleef Engineering Associate, the Drainage Area Maps for the existing and proposed site conditions, as defined within this report, were established. A Grading Plan was developed for the proposed site improvements with consideration to the existing drainage patterns to the maximum extent practicable. The project was designed to ensure runoff from the proposed development would meet the required peak flow rate reductions of 50%, 75% and 80% for the 2-year, 10-year, and 100-year storm events respectively.

Stormwater runoff generated by the proposed improvements will be collected via a series of inlets, and underground pipes and conveyed into an aboveground infiltration basin and then discharged to the Central Study Point discussed above. The storm sewer design accommodates the 25-yr design storm utilizing the Rational Method under free flowing conditions. Associated calculations are included in the Appendix of this report.

Based upon the scope of the project, the development is classified as a major development; and therefore, the project has been designed to meet the stormwater runoff quantity set forth by the Township of West Windsor Design Standards, Mercer County Design Standards, DRCC, and NJAC 7:8. The following items are addressed within this report:

- Erosion control and runoff quantity standards
- Stormwater runoff quality standards
- Calculation of stormwater runoff
- Standards for structural stormwater management measures

Runoff volumes for the site were modeled utilizing HydroCAD by HydroCAD Software Solutions LLC using the Urban Hydrology for Small Watershed TR55 method for the applicable design storms. The 2-, 10- and 100-year quantity design storms are based upon the New Jersey 24-Hour Rainfall Frequency Data for Mercer County as published by the USDA NRCS utilizing a West Windsor-Plainsboro 5 April 2020 VCEA #1808-WW-01 NOAA Curve C rainfall distribution. Curve number calculations have been included within the Appendix and are based upon The Hydrologic Soil Groups as identified by the Mercer County Soil Survey. Mercer County Stormwater regulations state that all disturbed lands to be modeled as poor condition or if the landuse is an urban or residential district it should be modeled as the next hydrologic group after development (i.e. a "B" soil would convert to a "C" soil). The landuse modified in the model as Mercer County regulations require. A minimum time of concentration of ten (10) minutes was utilized for impervious areas. The existing and proposed time of concentration calculations were calculated using the guidance provided within the May 2010 update of Chapter 15 of the National Engineering Handbook. Pervious and impervious areas were modeled separately as suggested in the NJDEP Stormwater Management Best Management Practices Manual.

Stormwater Quality standards were met capturing and infiltrating all of the runoff generated from the NJDEP Water Quality Storm (1.25 inches in 2 hours). The infiltration rate measured at the proposed basin location is 0.417 in/hr. The NJDEP Stormwater BMP Manual states that an infiltration basin must have an in-situ permeability greater than 1 inch per hour. The in-situ saoil between the bottom of the basin and the top of the seasonal high water table has a permeability less than 1 in/hour so a portion of the soil will be removed and replaced with K5 sand (approximately 4,500 square feet). K5 sand has a permeability of 10 in/hour after you include the recommended NJDEP BMP Manual safety factor. The volume of the NJDEP Water Quality Storm runoff collected in the basin is 23,208 cubic feet. It will take 6.2 hours to drain 23,208 cf of water through 4,500 sf of sand. The allowable drainage time of 72 hours.

V. RUNOFF RATE REDUCTION PERFORMANCE

The following is a comparison of overall pre- and post- development runoff rates for the proposed project disturbance area as required by N.J.A.C. 7:8:

Existing vs. Proposed Runoff Rates to Study Point 1										
	Proposed Runoff (cfs)	% of Reduction								
2 Year	16.69	8.34	4.97	70.61%						
10 Year	27.82	20.86	7.86	70.60%						
100 Year	50.26	40.20	11.04	76.36%						

The proposed aboveground infiltration basin will convey through a proposed stormwater pipe and discharge to the existing 24-inch stormwater pipe at the Central Study Point. The connection between the aboveground infiltration basin and the 24" diameter corrugated metal pipe has a slope of 0.59%. The existing pipe will be extended 25-feet to relocated the existing manhole out from under the proposed building. According to Manning's equation, a 24-inch diameter pipe made of corrugated metal pipe at 0.59% slope has a maximum capacity of 10.26 cfs.

Manning's Equation: $q = ((k_n / n) R_h^{2/3} S^{1/2}) A$ q = flow (cfs) kn = 1.486 n = Mannings Coefficient of Roughness (0.022 for CMP)Rh = Hydraulic Radius = Area/Wetter Perimeter. Hydraulic Radius of a full pipe = 2 * radius S = Slope (ft/ft)

VCEA attempted to design the system to have the peak flow at the point of study be less than 10.26 cfs. Due to existing physical constraints, VCEA was unable to do that for the 100 year storm. The flow at the point of study for the 100 year storm is 11.04 cfs. VCEA is able to achieve a higher flow through the existing storm sewer system by allowing the existing stormwater pipe to surcharge slightly just downstream of the point of study. Using the Hazen-Williams Equation

Hazen Williams Equation: $h_{100ft} = 0.2083 (100 / c)^{1.852} q^{1.852} / d_h^{4.8655}$ $h_{100ft} =$ friction head loss in feet of water per 100 feet of pipe (fth20/100 ft pipe) c = Hazen-Williams roughness constant q = volume flow (gal/min) dh = inside hydraulic diameter (inches)

To achieve a 11.08 cfs in 24" diameter CMP pipe, you need 0.763 ft of head. The bottom invert of the pipe is 90.46. The elevation of the water when the pipe is full at the bottom of the pipe is 92.46. The elevation of the water when is surcharges is 93.22. The elevation of the lowest outlet in the outlet structure of the basin is 93.96. While the water will back up in the pipeline upstream during the 100 year storm, it will not back up into the basin, the basin will also flow under gravity flow conditions. Also, VCEA would like to know, that the existing stormwater system currently works this way to a much greater extreme. Currently, the 100 year storm is

modeled to generate a peak flow 50.26 cfs which is far greater than the allowed 10.26 cfs through the CMP pipe. The only reason the existing system does not back up out of the inlets is that the system becomes pressurized and generates flows required to move the stormwater through the pipes with any localized flooding.

VI. GROUNDWATER RECHARGE

The subject property is classified as a "major development" by the standards set forth by N.J.A.C. 7:8. Impervious coverage on site has been increased and there is a post-development annual recharge deficit of 59,672 cubic feet. This site will utilize an infiltration basin to infiltrate runoff and will provide an annual recharge volume of 147,070 cubic feet at an effective depth of 0.5 feet. We will utilize a depth of water 1.4 feet which will produce an annual recharge volume of 147,070 cubic feet, thus meeting groundwater recharge requirements. The annual Groundwater Recharge Analysis (GSR-32) spreadsheet is included in the appendix of this report.

VIII. TEMPORARY SEDIMENT BASIN

The proposed basin will be utilized as a temporary sediment basin with a temporary riser during construction. Per the NJ Soil Erosion and Sediment Control Standards, Section 24, "Standard for Sediment Basin," The minimum width shall be determined using the following equation:

Width = $10 \times (Q_5)^{1/2}$ Width = $10 \times (28.3)^{1/2}$ Width = 53.2 feet

The sediment storage capacity plus two-year storm runoff off volume was determined using the following equation:

V = (DA)(A)(DR)(TE)($1/\gamma_s$)(2,000 lbs/tons)(1/43,560 sq. ft/ac.) V = (8.223)(1)(0.83)(90)(1/85)(2,000)(1/43,560) V = 0.33 acre feet

2-year runoff volume = 0.955 ac-ft Total sediment + runoff volume = 1.29 ac-ft

Basin volume at elevation 95.67 = 1.29 ac-ft

VII. STABILITY ANALYSIS

Per the NJ Soil Erosion and Sediment Control Standards, Section 21, "Standard for Off-Site Stability," compliance has been met for the proposed discharge of stormwater/infiltration basin. Study Point 1, the runoff will be discharged into an existing stormwater drainage system. Downstream flows during every storm event have also been analyzed to Study Point 1 and have been determined to meet the 50%, 75%, and 80% reductions for the 2-year, 10-year and 100-year storm events respectively, therefore meeting the conditions of the NJ SESC Standards Section 21-1.

The emergency spillway has been designed in accordance with Appendix A10 of NJ Soil Erosion and Sediment Control Standards. Two simulations were run for the emergency spillway. One with only the orifice turned off and one with the orifice and top of box turned off to simulate blockages. The maximum stormwater elevation rises above the emergency spillway with both the top of the box and orifice turned off. The peak elevation of the water during the 100-year storm with only the orifice turned off is 98.30. The 2.2 cfs discharge in the emergency condition over the 21-foot spillway width will have a velocity of 0.95 feet per second with a maximum depth of 0.11 feet. Per Appendix A10, the spillway is permitted to have a maximum velocity of 2.5 feet per second. The spillways hydrograph routings are located in the appendix of this report.

VIII. CONCLUSION

The proposed project has been designed in a manner that will not adversely impact the existing drainage patterns, adjacent roadways or adjacent parcels. The stormwater runoff rates for the 2, 10, and 100-year design storms have been designed to meet the required reductions rates. The stormwater runoff rates for the project disturbance area for the 2, 10, and 100-year design storms meet or exceed the reduction criteria set forth by N.J.A.C. 7:8 under free flow conditions. With that stated, it is evident that the proposed development meets all regulatory requirements and will not have a negative impact on any existing stormwater management systems within the vicinity of the subject parcel.

APPENDIX

SOIL SURVEY

United States Department of Agriculture

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Mercer County, New Jersey

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	8
Soil Map	9
Legend	.10
Map Unit Legend	. 11
Map Unit Descriptions	.11
Mercer County, New Jersey	.13
GKAWOB—Glassboro and Woodstown sandy loams, 0 to 5 percent	
slopes	.13
OthA—Othello silt loams, 0 to 2 percent slopes, northern coastal plain	15
SacA—Sassafras sandy loam, 0 to 2 percent slopes, Northern Coastal	
Plain	. 17
SacB—Sassafras sandy loam, 2 to 5 percent slopes, Northern Coastal	
Plain	. 19
SacC—Sassafras sandy loam, 5 to 10 percent slopes, Northern	
Coastal Plain	.21
References	.23

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP INFORMATION	The soil surveys that comprise your AOI were mapped at 1:24,000,	Warning: Soil Map may not be valid at this scale.	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil	line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.		measurements.	Source of Map: Natural Resources Conservation Service Web Soil Survey URL:	Coordinate System: Web Mercator (EPSG:3857)	Maps from the Web Soil Survey are based on the Web Mercator	projection, which preserves direction and shape but distorts distance and area A projection that preserves area each as the	Albers equal-area conic projection, should be used if more	accurate calculations of distance or area are required.	This product is generated from the USDA-NRCS certified data as	of the version date(s) listed below.	Soil Survey Area: Mercer County, New Jersey	Survey Area Data: Version 15, Sep 16, 2019	Soil map units are labeled (as space allows) for map scales	1:50,000 or larger.	Date(s) aerial images were photographed: May 2, 2019—Jul 9,	2019	The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
IAP LEGEND	(AOI) (AOI) (AOI)	Jygons 👩 Very Stony Spot	nes 🕱 Other Dints	Special Line Features Water Features	 Streams and Canak Transportation 	cione	US Routes	Major Roads	Local Roads	Background	o 🗾 🗾 Aerial Photography		Vater					1 Spot			
2	nterest (AOI) Area of Interest	Soil Map Unit P	Soil Map Unit Li Soil Map Unit P	Il Point Features Blowout	Borrow Pit	Clay Spot Closed Denress	Gravel Pit	Grave ll y Spot	Landfi	Lava Flow	Marsh or swam	Mine or Quarry	Miscellaneous V	Perennial Water	Rock Outcrop	Saline Spot	Sandy Spot	Severely Erode	Sinkhole	Slide or Slip	Sodic Spot
	Area of Ir	Soils	} =	Specia		₩ <	> >\$	8 <mark>0</mark>	0	\checkmark	1	¢<	0	0	>	+	0 0 0 0	Û	0	A	Ø

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
GKAWOB	Glassboro and Woodstown sandy loams, 0 to 5 percent slopes	0.2	1.1%
OthA	Othello silt loams, 0 to 2 percent slopes, northern coastal plain	1.1	5.9%
SacA	Sassafras sandy loam, 0 to 2 percent slopes, Northern Coastal Plain	13.9	76.5%
SacB	Sassafras sandy loam, 2 to 5 percent slopes, Northern Coasta l Pl ain	2.8	15.4%
SacC	Sassafras sandy loam, 5 to 10 percent slopes, Northern Coasta l Pl ain	0.2	1.1%
Totals for Area of Interest		18.2	100.0%

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor

components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Mercer County, New Jersey

GKAWOB—Glassboro and Woodstown sandy loams, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: 1jg7f Elevation: 0 to 130 feet Mean annual precipitation: 28 to 59 inches Mean annual air temperature: 46 to 79 degrees F Frost-free period: 161 to 231 days Farmland classification: All areas are prime farmland

Map Unit Composition

Glassboro and similar soils: 45 percent *Woodstown and similar soils:* 40 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Glassboro

Setting

Landform: Flats Down-slope shape: Linear Across-slope shape: Linear Parent material: Loamy fluviomarine deposits

Typical profile

A - 0 to 10 inches: sandy loam BA - 10 to 13 inches: sandy loam Bg - 13 to 18 inches: sandy loam Btg - 18 to 26 inches: sandy loam C - 26 to 60 inches: gravelly sandy loam

Properties and qualities

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: About 6 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 5.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2w Hydrologic Soil Group: A/D Hydric soil rating: No

Description of Woodstown

Setting

Landform: Drainageways

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Concave Parent material: Old alluvium and/or sandy marine deposits

Typical profile

Ap - 0 to 11 inches: sandy loam BA - 11 to 17 inches: sandy loam Bt - 17 to 23 inches: sandy loam BC - 23 to 30 inches: sandy loam C - 30 to 48 inches: sandy loam 2C - 48 to 60 inches: stratified loamy sand to sandy loam

Properties and qualities

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Moderately well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 6.00 in/hr)
Depth to water table: About 18 to 42 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Moderate (about 6.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2w Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Mullica, rarely flooded

Percent of map unit: 5 percent Landform: Flood plains, drainageways, depressions Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope Down-slope shape: Linear, concave Across-slope shape: Linear, concave Hydric soil rating: Yes

Downer

Percent of map unit: 5 percent Landform: Knolls, low hills Landform position (three-dimensional): Nose slope, interfluve Down-slope shape: Convex, linear Across-slope shape: Linear Hydric soil rating: No

Fallsington

Percent of map unit: 5 percent Landform: Depressions Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

OthA—Othello silt loams, 0 to 2 percent slopes, northern coastal plain

Map Unit Setting

National map unit symbol: 2thwm Elevation: 0 to 300 feet Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 46 to 64 degrees F Frost-free period: 190 to 250 days Farmland classification: Farmland of statewide importance, if drained

Map Unit Composition

Othello, drained, and similar soils: 50 percent Othello, undrained, and similar soils: 30 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Othello, Drained

Setting

Landform: Swales, flats, depressions Landform position (two-dimensional): Footslope Landform position (three-dimensional): Dip, talf Down-slope shape: Concave, linear Across-slope shape: Linear, concave Parent material: Silty eolian deposits over fluviomarine deposits

Typical profile

Ap - 0 to 9 inches: silt loam Btg - 9 to 29 inches: silt loam 2BCg - 29 to 34 inches: sandy loam 2Cg - 34 to 80 inches: loamy sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.57 in/hr)
Depth to water table: About 10 to 20 inches
Frequency of flooding: None
Frequency of ponding: Rare
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: Moderate (about 8.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3w Hydrologic Soil Group: C/D Hydric soil rating: Yes

Description of Othello, Undrained

Setting

Landform: Drainageways, swales, flats, depressions Landform position (two-dimensional): Footslope Landform position (three-dimensional): Dip, talf Down-slope shape: Concave, linear Across-slope shape: Linear, concave Parent material: Silty eolian deposits over fluviomarine deposits

Typical profile

Oe - 0 to 2 inches: peat *A - 2 to 4 inches:* silt loam *Eg - 4 to 10 inches:* silt loam *Btg - 10 to 29 inches:* silt loam *2BCg - 29 to 35 inches:* sandy loam *2Cg - 35 to 80 inches:* loamy sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.57 in/hr)
Depth to water table: About 0 to 10 inches
Frequency of flooding: None
Frequency of ponding: Occasional
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: High (about 9.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 5w Hydrologic Soil Group: C/D Hydric soil rating: Yes

Minor Components

Fallsington, undrained

Percent of map unit: 8 percent Landform: Flats, depressions, drainageways, swales Landform position (two-dimensional): Footslope Landform position (three-dimensional): Talf, dip Down-slope shape: Linear, concave Across-slope shape: Linear, concave Hydric soil rating: Yes

Kentuck, undrained

Percent of map unit: 7 percent Landform: Flats, depressions, swales Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf, dip *Down-slope shape:* Linear, concave *Across-slope shape:* Linear, concave *Hydric soil rating:* Yes

Mattapex

Percent of map unit: 5 percent Landform: Swales, broad interstream divides, flats, depressions Landform position (two-dimensional): Footslope, summit Landform position (three-dimensional): Dip, talf Down-slope shape: Concave, linear Across-slope shape: Linear, concave Hydric soil rating: No

SacA—Sassafras sandy loam, 0 to 2 percent slopes, Northern Coastal Plain

Map Unit Setting

National map unit symbol: 2thx8 Elevation: 0 to 470 feet Mean annual precipitation: 41 to 49 inches Mean annual air temperature: 53 to 58 degrees F Frost-free period: 190 to 250 days Farmland classification: All areas are prime farmland

Map Unit Composition

Sassafras and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Sassafras

Setting

Landform: Fluviomarine terraces, flats Landform position (three-dimensional): Riser, rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Loamy fluviomarine deposits

Typical profile

Ap - 0 to 12 inches: sandy loam Bt1 - 12 to 18 inches: sandy loam Bt2 - 18 to 28 inches: sandy clay loam BC - 28 to 40 inches: loamy sand C1 - 40 to 58 inches: sand C2 - 58 to 80 inches: sand

Properties and qualities

Slope: 0 to 2 percent *Depth to restrictive feature:* More than 80 inches

Natural drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 2.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water storage in profile: Moderate (about 7.1 inches)

Interpretive groups

Land capability classification (irrigated): 1 Land capability classification (nonirrigated): 1 Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Fallsington, drained

Percent of map unit: 4 percent Landform: Depressions, flats, swales, broad interstream divides Landform position (two-dimensional): Footslope, summit Landform position (three-dimensional): Dip, talf Down-slope shape: Concave, linear Across-slope shape: Concave, linear Hydric soil rating: Yes

Woodstown

Percent of map unit: 4 percent Landform: Fluviomarine terraces, flats Landform position (two-dimensional): Summit Landform position (three-dimensional): Tread, talf Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Downer

Percent of map unit: 4 percent Landform: Knolls, fluviomarine terraces, flats Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve, riser, rise Down-slope shape: Convex, linear Across-slope shape: Linear Hydric soil rating: No

Ingleside

Percent of map unit: 4 percent Landform: Fluviomarine terraces, flats Landform position (two-dimensional): Summit Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Aura

Percent of map unit: 4 percent Landform: Low hills, fluviomarine terraces Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope, nose slope, riser *Down-slope shape:* Linear *Across-slope shape:* Linear *Hydric soil rating:* No

SacB—Sassafras sandy loam, 2 to 5 percent slopes, Northern Coastal Plain

Map Unit Setting

National map unit symbol: 2thxd Elevation: 0 to 470 feet Mean annual precipitation: 41 to 49 inches Mean annual air temperature: 53 to 58 degrees F Frost-free period: 190 to 250 days Farmland classification: All areas are prime farmland

Map Unit Composition

Sassafras and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Sassafras

Setting

Landform: Fluviomarine terraces, flats Landform position (three-dimensional): Riser, rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Loamy fluviomarine deposits

Typical profile

Ap - 0 to 12 inches: sandy loam Bt1 - 12 to 18 inches: sandy loam Bt2 - 18 to 28 inches: sandy clay loam BC - 28 to 40 inches: loamy sand C1 - 40 to 58 inches: sand C2 - 58 to 80 inches: sand

Properties and qualities

Slope: 2 to 5 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Moderate (about 7.1 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 2e Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Woodstown

Percent of map unit: 4 percent Landform: Fluviomarine terraces, broad interstream divides, depressions, flats Landform position (two-dimensional): Summit, footslope Landform position (three-dimensional): Tread, talf, dip Down-slope shape: Linear, concave Across-slope shape: Linear, concave Hydric soil rating: No

Downer

Percent of map unit: 4 percent Landform: Knolls, fluviomarine terraces, flats Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve, riser, rise Down-slope shape: Convex, linear Across-slope shape: Linear Hydric soil rating: No

Fallsington, drained

Percent of map unit: 4 percent Landform: Swales, flats, depressions Landform position (two-dimensional): Footslope Landform position (three-dimensional): Dip, talf Down-slope shape: Concave, linear Across-slope shape: Linear, concave Hydric soil rating: Yes

Ingleside

Percent of map unit: 4 percent Landform: Flats Landform position (two-dimensional): Summit Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Aura

Percent of map unit: 4 percent Landform: Low hills, fluviomarine terraces Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope, nose slope, riser Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

SacC—Sassafras sandy loam, 5 to 10 percent slopes, Northern Coastal Plain

Map Unit Setting

National map unit symbol: 2thxs Elevation: 0 to 470 feet Mean annual precipitation: 41 to 49 inches Mean annual air temperature: 53 to 58 degrees F Frost-free period: 190 to 250 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Sassafras and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Sassafras

Setting

Landform: Fluviomarine terraces, flats Landform position (three-dimensional): Riser, rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Loamy fluviomarine deposits

Typical profile

Ap - 0 to 9 inches: sandy loam Bt1 - 9 to 18 inches: sandy loam Bt2 - 18 to 28 inches: sandy clay loam BC - 28 to 40 inches: loamy sand C1 - 40 to 58 inches: sand C2 - 58 to 80 inches: sand

Properties and qualities

Slope: 5 to 10 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Moderate (about 7.1 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Downer

Percent of map unit: 4 percent Landform: Knolls, fluviomarine terraces, flats Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve, riser, rise Down-slope shape: Convex, linear Across-slope shape: Linear Hydric soil rating: No

Woodstown

Percent of map unit: 4 percent Landform: Fluviomarine terraces, broad interstream divides, depressions, flats Landform position (two-dimensional): Summit, footslope Landform position (three-dimensional): Tread, talf, dip Down-slope shape: Linear, concave Across-slope shape: Linear, concave Hydric soil rating: No

Ingleside

Percent of map unit: 4 percent Landform: Flats Landform position (two-dimensional): Summit Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Aura

Percent of map unit: 4 percent Landform: Low hills, fluviomarine terraces Landform position (two-dimensional): Backslope Landform position (three-dimensional): Nose slope, side slope, riser Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Fallsington, drained

Percent of map unit: 4 percent Landform: Flats, depressions, swales Landform position (two-dimensional): Footslope Landform position (three-dimensional): Talf, dip Down-slope shape: Linear, concave Across-slope shape: Linear, concave Hydric soil rating: Yes

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf
USGS MAP TAX MAP

HIGH SCHOOL SOUTH LOCATION MAP: USGS WEST WINDSOR QUAD

HIGH SCHOOL SOUTH LOCATION MAP: TAX MAP

EXISTING CONDITION HYDROGRAPH SUMMARY REPORTS NJ WATER QUALITY 2-100 YEAR STORM EVENTS

Rainfall Events Listing

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	2YR STM	NOAA 24-hr	С	Default	24.00	1	3.30	2
2	10YR STM	NOAA 24-hr	С	Default	24.00	1	5.00	2
3	100YR STM	NOAA 24-hr	С	Default	24.00	1	8.30	2
4	NJDEP Water Quality Storm	NJ DEP 2-hr		Default	2.00	1	1.25	2

Printed 4/22/2020 Page 3

Area Listing (selected nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
2.895	74	>75% Grass cover, Good, HSG C (2S)
4.452	98	Paved parking & roofs (1S)
7.347	89	TOTAL AREA

Printed 4/22/2020 Page 4

Soil Listing (selected nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
2.895	HSG C	2S
0.000	HSG D	
4.452	Other	1S
7.347		TOTAL AREA

	Exisitng Conditions
Stormwater Calcs DRCC Revisions	
Prepared by Swalsh	Printed 4/22/2020
HydroCAD® 10.10-3b s/n M04299 © 2020 HydroCAD Software Solutions LLC	Page 5

Ground Covers (selected nodes)

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
 (acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
 0.000	0.000	2.895	0.000	0.000	2.895	>75% Grass cover, Good	28
0.000	0.000	0.000	0.000	4.452	4.452	Paved parking & roofs	1S
0.000	0.000	2.895	0.000	4.452	7.347	TOTAL AREA	

	Exisitng Conditions
Stormwater Calcs DRCC Revisions	
Prepared by Swalsh	Printed 4/22/2020
HydroCAD® 10.10-3b s/n M04299 © 2020 HydroCAD Software Solutions LLC	Page 6
	-

Pipe Listing (selected nodes)

Line#	Node	In-Invert	Out-Invert	Length	Slope	n	Diam/Width	Height	Inside-Fill
	Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)
1	1S	0.00	0.00	154.0	0.0330	0.011	18.0	0.0	0.0
2	1S	0.00	0.00	114.0	0.0021	0.020	24.0	0.0	0.0
3	2S	0.00	0.00	34.0	0.0062	0.011	12.0	0.0	0.0
4	2S	0.00	0.00	266.0	0.0096	0.011	15.0	0.0	0.0
5	2S	0.00	0.00	94.0	0.0035	0.020	24.0	0.0	0.0

Stormwater Calcs DRCC Revisions Prepared by Swalsh HydroCAD® 10.10-3b s/n M04299 © 2020 Hydr	NOAA 24-	Exisitng Conditions hr C 2YR STM Rainfall=3.30" Printed 4/22/2020 Page 7
Time span=0.00 Runoff by SCS TF Reach routing by Stor-Ind+T	0-36.00 hrs, dt=0.05 hrs, 721 poir R-20 method, UH=SCS, Weighter rans method - Pond routing by \$	nts d-CN Stor-Ind method
Subcatchment 1S: Existing Impervious	Runoff Area=4.452 ac 100.00 Flow Length=656' Tc=10.0 min C	% Impervious Runoff Depth=3.07" CN=98 Runoff=13.29 cfs 1.138 af
Subcatchment 2S: Existing Pervious	Runoff Area=2.895 ac 0.00 ^c Flow Length=736' Tc=10.0 min	% Impervious Runoff Depth=1.10" CN=74 Runoff=3.43 cfs 0.266 af
Link 3L: Total Existing Condition		Inflow=16.69 cfs 1.404 af Primary=16.69 cfs 1.404 af
Total Runoff Area = 7.34	7 ac Runoff Volume = 1.404 af 39.40% Pervious = 2.895 ac	Average Runoff Depth = 2.29" 60.60% Impervious = 4.452 ac

Exisitng Conditions

Printed 4/22/2020

Page 8

[47] Hint: Peak is 197% of capacity of segment #4

1.138 af, Depth= 3.07" Runoff 13.29 cfs @ 12.17 hrs, Volume= =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs NOAA 24-hr C 2YR STM Rainfall=3,30"

	Area	(ac) Cl	N Desc	cription		
	4.	452 9	8 Pave	ed parking	& roofs	
	4.	452	100.	00% Impe	rvious Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	1.5	150	0.0267	1.70		Sheet Flow, Sheet Flow
						Smooth surfaces n= 0.011 P2= 3.30"
	1.7	238	0.0137	2.38		Shallow Concentrated Flow, Shallow Concentrated Flow
		. – .				Paved Kv= 20.3 fps
	0.2	154	0.0330	12.76	22.55	Pipe Channel, Circulat Channel (pipe)
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
	0.0		0.0004	0.44	074	n= 0.011 Concrete pipe, straight & clean
	0.9	114	0.0021	2.14	6.74	Pipe Channel, Circular Channel (pipe)
						24.0" Round Area= 3.1 st Perim= 6.3" r= 0.50"
	F 7					n= 0.020 Corrugated PE, corrugated interior
_	5.7					Direct Entry, To make it 10 minutes
	10.0	656	Total			

Subcatchment 1S: Existing Impervious

[47] Hint: Peak is 103% of capacity of segment #2

0.266 af, Depth= 1.10" Runoff 3.43 cfs @ 12.19 hrs, Volume= =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs NOAA 24-hr C 2YR STM Rainfall=3,30"

Area	(ac) Cl	N Desc	cription		
2.	895 7	4 >759	% Grass co	over, Good,	HSG C
2.	895	100.	00% Pervi	ous Area	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
4.0	24	0.0101	0.10		Sheet Flow, Sheet Flow
					Grass: Short n= 0.150 P2= 3.30"
0.1	34	0.0062	4.22	3.32	Pipe Channel, Pipe
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011 Concrete pipe, straight & clean
0.7	266	0.0096	6.10	7.48	Pipe Channel, Pipe
					15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'
					n= 0.011 Concrete pipe, straight & clean
0.6	94	0.0035	2.77	8.70	Pipe Channel, Pipe
					24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
~ ~			4.00		n= 0.020 Corrugated PE, corrugated interior
3.3	200		1.00		Direct Entry, Grass Shallow Concentrated Flow
0.8	118		2.60		Direct Entry, Gutter Shallow Concentrated Flow
0.5					Direct Entry, 10 make 10 minutes
10.0	736	Total			

Exisitng Conditions

Subcatchment 2S: Existing Pervious

Exisitng Conditions

Printed 4/22/2020

Page 11

Time (hours)

Summary for Link 3L: Total Existing Condition

Inflow A	Area =	7.347 ac,	60.60% Impervious,	Inflow Depth = 2	.29" for 2YR STM event
Inflow	=	16.69 cfs @) 12.17 hrs, Volume	e= 1.404 af	
Primary	y =	16.69 cfs @) 12.17 hrs, Volume	e= 1.404 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Link 3L: Total Existing Condition

Stormwater Calcs DRCC Revisions Prepared by Swalsh HydroCAD® 10.10-3b s/n M04299 © 2020 Hydr	NOAA	Exisitng Conditions 24-hr C 10YR STM Rainfall=5.00" Printed 4/22/2020 Page 13
Time span=0.0 Runoff by SCS TI Reach routing by Stor-Ind+1	0-36.00 hrs, dt=0.05 hrs, 72 R-20 method, UH=SCS, We Trans method - Pond routin	1 points ighted-CN g by Stor-Ind method
Subcatchment 1S: Existing Impervious	Runoff Area=4.452 ac 1 Flow Length=656' Tc=10.0 r	00.00% Impervious Runoff Depth=4.76" min CN=98 Runoff=20.27 cfs 1.767 af
Subcatchment 2S: Existing Pervious	Runoff Area=2.895 ac Flow Length=736' Tc=10.0	0.00% Impervious Runoff Depth=2.36" min CN=74 Runoff=7.56 cfs 0.570 af
Link 3L: Total Existing Condition		Inflow=27.82 cfs 2.338 af Primary=27.82 cfs 2.338 af
Total Runoff Area = 7.34	7 ac Runoff Volume = 2.33 39.40% Pervious = 2.895	38 af Average Runoff Depth = $3.82''$ 5 ac 60.60% Impervious = 4.452 ac

Summary for Subcatchment 1S: Existing Impervious

[47] Hint: Peak is 301% of capacity of segment #4

Runoff = 20.27 cfs @ 12.17 hrs, Volume= 1.767 af, Depth= 4.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs NOAA 24-hr C 10YR STM Rainfall=5.00"

_	Area	(ac) Cl	N Dese	cription							
	4.452 98 Paved parking & roofs										
	4.	452	100.	00% Impe	rvious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
	1.5	150	0.0267	1.70		Sheet Flow, Sheet Flow					
						Smooth surfaces n= 0.011 P2= 3.30"					
	1.7	238	0.0137	2.38		Shallow Concentrated Flow, Shallow Concentrated Flow					
					~~ ~~	Paved Kv= 20.3 fps					
	0.2	154	0.0330	12.76	22.55	Pipe Channel, Circulat Channel (pipe)					
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'					
	0.0		0.0004	0.44	074	n= 0.011 Concrete pipe, straight & clean					
	0.9	114	0.0021	2.14	6.74	Pipe Channel, Circular Channel (pipe)					
						24.0" Round Area= 3.1 st Perim= 6.3" r= 0.50"					
	F 7					n= 0.020 Corrugated PE, corrugated interior					
_	5.7					Direct Entry, 10 make it 10 minutes					
	10.0	656	Total								

Subcatchment 1S: Existing Impervious

Summary for Subcatchment 2S: Existing Pervious

[47] Hint: Peak is 228% of capacity of segment #2[47] Hint: Peak is 101% of capacity of segment #3

Runoff = 7.56 cfs @ 12.18 hrs, Volume=

0.570 af, Depth= 2.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs NOAA 24-hr C 10YR STM Rainfall=5.00"

Area	(ac) Cl	N Desc	cription		
2.	895 7	4 >759	% Grass co	over, Good,	HSG C
2.	895	100.	00% Pervi	ous Area	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
4.0	24	0.0101	0.10		Sheet Flow, Sheet Flow
					Grass: Short n= 0.150 P2= 3.30"
0.1	34	0.0062	4.22	3.32	Pipe Channel, Pipe
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011 Concrete pipe, straight & clean
0.7	266	0.0096	6.10	7.48	Pipe Channel, Pipe
					15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'
					n= 0.011 Concrete pipe, straight & clean
0.6	94	0.0035	2.77	8.70	Pipe Channel, Pipe
					24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
					n= 0.020 Corrugated PE, corrugated interior
3.3	200		1.00		Direct Entry, Grass Shallow Concentrated Flow
0.8	118		2.60		Direct Entry, Gutter Shallow Concentrated Flow
0.5					Direct Entry, 10 make 10 minutes
10.0	736	Total			

Subcatchment 2S: Existing Pervious

Summary for Link 3L: Total Existing Condition

Inflow /	Area =	7.347 ac, 6	0.60% Impervious,	Inflow Depth =	3.82" for	10YR STM event
Inflow	=	27.82 cfs @	12.17 hrs, Volume	e= 2.338 a	ſ	
Primar	y =	27.82 cfs @	12.17 hrs, Volume	e= 2.338 a	f, Atten= 0	%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Link 3L: Total Existing Condition

Stormwater Calcs DRCC Revisions Prepared by Swalsh HydroCAD® 10.10-3b s/n M04299 © 2020 Hydr	NOAA 24-hr C	Exisitng Conditions 100YR STM Rainfall=8.30" Printed 4/22/2020 Page 19
Time span=0.00 Runoff by SCS TF Reach routing by Stor-Ind+T	0-36.00 hrs, dt=0.05 hrs, 721 point R-20 method, UH=SCS, Weighted- rans method - Pond routing by St	s CN or-Ind method
Subcatchment 1S: Existing Impervious	Runoff Area=4.452 ac 100.00% Flow Length=656' Tc=10.0 min CN	Impervious Runoff Depth=8.06" I=98 Runoff=33.77 cfs 2.990 af
Subcatchment 2S: Existing Pervious	Runoff Area=2.895 ac 0.00% Flow Length=736' Tc=10.0 min CN	Impervious Runoff Depth=5.19" I=74 Runoff=16.51 cfs 1.253 af
Link 3L: Total Existing Condition		Inflow=50.26 cfs 4.244 af Primary=50.26 cfs 4.244 af
Total Runoff Area = 7.34	7 ac Runoff Volume = 4.244 af / 39.40% Pervious = 2.895 ac	Average Runoff Depth = 6.93'' 60.60% Impervious = 4.452 ac

Summary for Subcatchment 1S: Existing Impervious

[47] Hint: Peak is 150% of capacity of segment #3 [47] Hint: Peak is 501% of capacity of segment #4

Runoff 33.77 cfs @ 12.17 hrs, Volume= =

2.990 af, Depth= 8.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs NOAA 24-hr C 100YR STM Rainfall=8.30"

Area	(ac) C	N Desc	cription							
4.452 98 Paved parking & roofs										
4.	452	100.	00% Impe	rvious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
1.5	150	0.0267	1.70		Sheet Flow, Sheet Flow					
					Smooth surfaces n= 0.011 P2= 3.30"					
1.7	238	0.0137	2.38		Shallow Concentrated Flow, Shallow Concentrated Flow					
					Paved Kv= 20.3 fps					
0.2	154	0.0330	12.76	22.55	Pipe Channel, Circulat Channel (pipe)					
					18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'					
0.0	444	0.0004	0.44	0.74	n= 0.011 Concrete pipe, straight & clean					
0.9	114	0.0021	Z.14	6.74	Pipe Channel, Circular Channel (pipe)					
					24.0° Round Area= 3.1 st Perim= 6.3 T= 0.50					
57					Direct Entry To make it 10 minutes					
	050	Tatal			Direct Litty, to make it to minutes					
10.0	656	rotal								

Exisitng Conditions

Subcatchment 1S: Existing Impervious

Summary for Subcatchment 2S: Existing Pervious

[47] Hint: Peak is 498% of capacity of segment #2 [47] Hint: Peak is 221% of capacity of segment #3 [47] Hint: Peak is 190% of capacity of segment #4

16.51 cfs @ 12.17 hrs, Volume= 1.253 af, Depth= 5.19" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs NOAA 24-hr C 100YR STM Rainfall=8.30"

Area	a (ac) C	<u>N Dese</u>	cription		
	2.895 7	24 >75 ⁴	% Grass co	over, Good,	HSG C
	2.895	100.	00% Pervi	ous Area	
Тс	c Length	Slope	Velocity	Capacity	Description
(min) (feet)	(ft/ft)	(ft/sec)	(cfs)	
4.0) 24	0.0101	0.10		Sheet Flow, Sheet Flow
					Grass: Short n= 0.150 P2= 3.30"
0.1	1 34	0.0062	4.22	3.32	Pipe Channel, Pipe
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011 Concrete pipe, straight & clean
0.7	7 266	0.0096	6.10	7.48	Pipe Channel, Pipe
					15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'
					n= 0.011 Concrete pipe, straight & clean
0.6	§ 94	0.0035	2.77	8.70	Pipe Channel, Pipe
					24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
					n= 0.020 Corrugated PE, corrugated interior
3.3	3 200		1.00		Direct Entry, Grass Shallow Concentrated Flow
0.0	3 118		2.60		Direct Entry, Gutter Shallow Concentrated Flow
0.5	D				Direct Entry, To make 10 minutes
10.0) 736	Total			

Exisitng Conditions

Subcatchment 2S: Existing Pervious

Summary for Link 3L: Total Existing Condition

Inflow /	Area	ı =	7.347 ac, 6	0.60% Imp	ervious,	Inflow Depth =	6.93"	for 7	100YR STM ever	nt
Inflow		=	50.26 cfs @	12.17 hrs,	Volume	= 4.244	af			
Primar	У	=	50.26 cfs @	12.17 hrs,	Volume	= 4.244	af, Atte	n= 0%	%, Lag= 0.0 min	

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Link 3L: Total Existing Condition

	Exisitng Conditions
Stormwater Calcs DRCC Revisions	NJ DEP 2-hr NJDEP Water Quality Storm Rainfall=1.25"
Prepared by Swalsh	Printed 4/22/2020
HydroCAD® 10.10-3b s/n M04299 © 2020 Hydro	oCAD Software Solutions LLC Page 25
Time span=0.00	0-36.00 hrs, dt=0.05 hrs, 721 points
Runoff by SCS TF	R-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+T	rans method - Pond routing by Stor-Ind method
Outpartalement 40. Eviation luman inve	Duraff Area-1 452 as 100 00% Imperious Duraff Depth-1 02"
Subcatchment 15: Existing Impervious	Runom Area=4.452 ac 100.00% Impervious Runoil Depin=1.03
Subcatchment 2S: Existing Pervious	Runoff Area=2 895 ac. 0.00% Impervious Runoff Depth=0.07"
Cabbatonment 20. Existing rentious	Flow Length= $736'$ Tc=10.0 min CN=74 Runoff=0.38 cfs 0.018 af
Link 3L: Total Existing Condition	Inflow=11.63 cfs_0.402 af
5	Primary=11.63 cfs 0.402 af
Total Runoff Area = 7.34	7 ac Runoff Volume = 0.402 af Average Runoff Depth = 0.66"
	39.40% Pervious = 2.895 ac 60.60% Impervious = 4.452 ac

Summary for Subcatchment 1S: Existing Impervious

[47] Hint: Peak is 170% of capacity of segment #4

Runoff = 11.47 cfs @ 1.15 hrs, Volume= 0.384 af, Depth= 1.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs NJ DEP 2-hr NJDEP Water Quality Storm Rainfall=1.25"

Area	(ac) C	N Desc	cription							
4.452 98 Paved parking & roofs										
4.	452	100.	00% Impe	rvious Area	l					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
1.5	150	0.0267	1.70		Sheet Flow, Sheet Flow					
					Smooth surfaces n= 0.011 P2= 3.30"					
1.7	238	0.0137	2.38		Shallow Concentrated Flow, Shallow Concentrated Flow					
					Paved Kv= 20.3 fps					
0.2	154	0.0330	12.76	22.55	Pipe Channel, Circulat Channel (pipe)					
					18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'					
					n= 0.011 Concrete pipe, straight & clean					
0.9	114	0.0021	2.14	6.74	Pipe Channel, Circular Channel (pipe)					
					24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'					
					n= 0.020 Corrugated PE, corrugated interior					
5.7					Direct Entry, To make it 10 minutes					
10.0	656	Total								

Subcatchment 1S: Existing Impervious

Summary for Subcatchment 2S: Existing Pervious

Runoff = 0.38 cfs @ 1.27 hrs, Volume= 0.018 af, Depth= 0.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs NJ DEP 2-hr NJDEP Water Quality Storm Rainfall=1.25"

Area	(ac) C	N Dese	cription						
2.	895 7	'4 >75°	% Grass co	over, Good,	HSG C				
2.895 100.00% Pervious Area									
Тс	Length	Slope	Velocity	Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
4.0	24	0.0101	0.10		Sheet Flow, Sheet Flow				
					Grass: Short n= 0.150 P2= 3.30"				
0.1	34	0.0062	4.22	3.32	Pipe Channel, Pipe				
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'				
					n= 0.011 Concrete pipe, straight & clean				
0.7	266	0.0096	6.10	7.48	Pipe Channel, Pipe				
					15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'				
					n= 0.011 Concrete pipe, straight & clean				
0.6	94	0.0035	2.77	8.70	Pipe Channel, Pipe				
					24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'				
~ ~					n= 0.020 Corrugated PE, corrugated interior				
3.3	200		1.00		Direct Entry, Grass Shallow Concentrated Flow				
0.8	118		2.60		Direct Entry, Gutter Shallow Concentrated Flow				
0.5					Direct Entry, 10 make 10 minutes				
10.0	736	Total							

Subcatchment 2S: Existing Pervious

Hydrograph

Summary for Link 3L: Total Existing Condition

Inflow	Area	a =	7.347 ac,	60.60% Imperv	ious, Inf	low Depth =	0.66"	for	NJDEP	Water	Quality \$	Storm event
Inflow		=	11.63 cfs @	1.15 hrs, Vo	lume=	0.402 a	af					
Primar	У	=	11.63 cfs @	1.15 hrs, Vo	lume=	0.402 a	af, Atte	en= 0°	%, Lag=	= 0.0 m	in	

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Link 3L: Total Existing Condition

PROPOSED CONDITION HYDROGRAPH SUMMARY REPORTS NJ WATER QUALITY & 2-100 YEAR STORM EVENTS

Stormwater Calcs DRCC Revisions		
Prepared by Swalsh	Printed	4/22/2020
HydroCAD® 10.10-3b s/n M04299 © 2020 HydroCAD Software Solutions LLC		Page 2

Rainfall Events Listing

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	2YR STM	NOAA 24-hr	С	Default	24.00	1	3.30	2
2	10YR STM	NOAA 24-hr	С	Default	24.00	1	5.00	2
3	100YR STM	NOAA 24-hr	С	Default	24.00	1	8.30	2
4	NJDEP Water Quality Storm	NJ DEP 2-hr		Default	2.00	1	1.25	2

Page 3

Area Listing (selected nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
2.375	74	>75% Grass cover, Good, HSG C (5S, 6S)
6.023	98	Paved parking & roofs (4S)
8.398	91	TOTAL AREA

Stormwater Calcs DRCC Revisions

Prepared by Swalsh HydroCAD® 10.10-3b s/n M04299 © 2020 HydroCAD Software Solutions LLC Printed 4/22/2020 Page 4

Soil Listing (selected nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
2.375	HSG C	5S, 6S
0.000	HSG D	
6.023	Other	4S
8.398		TOTAL AREA

Page 5

Ground Covers (selected nodes)

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
0.000	0.000	2.375	0.000	0.000	2.375	>75% Grass cover, Good	5S, 6S
0.000	0.000	0.000	0.000	6.023	6.023	Paved parking & roofs	4S
0.000	0.000	2.375	0.000	6.023	8.398	TOTAL AREA	

Stormwater Calcs DRCC Revisions

Prepared by Swalsh	Printed 4/22/2020
HydroCAD® 10.10-3b s/n M04299 © 2020 HydroCAD Software Solutions LLC	Page 6

Pipe Listing (selected nodes)

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	4S	0.00	0.00	314.0	0.0300	0.011	24.0	0.0	0.0
2	5S	0.00	0.00	163.0	0.0300	0.011	12.0	0.0	0.0
3	5S	0.00	0.00	105.0	0.0030	0.011	12.0	0.0	0.0
4	5S	0.00	0.00	12.0	0.0030	0.011	12.0	0.0	0.0
5	5S	0.00	0.00	112.0	0.0030	0.011	12.0	0.0	0.0
6	5S	0.00	0.00	73.0	0.0030	0.011	12.0	0.0	0.0
7	5S	0.00	0.00	51.0	0.0030	0.011	12.0	0.0	0.0
8	6S	0.00	0.00	50.0	0.0100	0.011	12.0	0.0	0.0

Stormuster Cales DDCC Devisions	Proposed Conditions
Stormwater Calcs DRCC Revisions	NOAA 24-NEC ZYR STWERAINTAII=3.30
Prepared by Swalsh	Printed 4/22/2020
HydroCAD® 10.10-3b s/n M04299 © 2020 Hydr	roCAD Software Solutions LLC Page 7
Time span=0.0 Runoff by SCS TI Reach routing by Stor-Ind+T	0-36.00 hrs, dt=0.05 hrs, 721 points R-20 method, UH=SCS, Weighted-CN rans method - Pond routing by Stor-Ind method
Subcatchment 4S: Proposed Impervious	Runoff Area=6.023 ac 100.00% Impervious Runoff Depth=3.07" Flow Length=673' Tc=10.0 min CN=98 Runoff=17.98 cfs 1.539 af
Subcatchment 5S: Proposed Pervious	Runoff Area=2.200 ac 0.00% Impervious Runoff Depth=1.10" Flow Length=666' Tc=10.0 min CN=74 Runoff=2.61 cfs 0.202 af
Subcatchment 6S: Proposed Pervious (By	Dass) Runoff Area=0.175 ac 0.00% Impervious Runoff Depth=1.10" Flow Length=134' Tc=8.0 min CN=74 Runoff=0.23 cfs 0.016 af
Pond 7P: REVISED WITH NEW COUNTY RO	OW Peak Elev=94.93' Storage=41,307 cf Inflow=20.56 cfs 1.742 af Outflow=4.91 cfs 1.208 af
Link 5L: Total Proposed Condition	Inflow=4.97 cfs 1.224 af Primary=4.97 cfs 1.224 af
Total Dupoff Area - 8.30	8 ac Dunoff Volume = 1 758 af Average Dunoff Donth = 2 51"

Total Runoff Area = 8.398 acRunoff Volume = 1.758 afAverage Runoff Depth = 2.51"28.28% Pervious = 2.375 ac71.72% Impervious = 6.023 ac

Summary for Subcatchment 4S: Proposed Impervious

Runoff = 17.98 cfs @ 12.17 hrs, Volume= 1.539 af, Depth= 3.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs NOAA 24-hr C 2YR STM Rainfall=3.30"

Area	(ac) C	N Desc	cription						
6.023 98 Paved parking & roofs									
6.	023	100.	00% Impe	rvious Area					
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
1.7	150	0.0180	1.45		Sheet Flow, Sheet Flow				
					Smooth surfaces n= 0.011 P2= 3.30"				
0.4	314	0.0300	14.74	46.31	Pipe Channel, Pipe Flow				
					24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'				
					n= 0.011 Concrete pipe, straight & clean				
1.7	209		2.00		Direct Entry, shallow concentrated flow				
6.2					Direct Entry, To make it to 10 minutes				
10.0	673	Total							

Subcatchment 4S: Proposed Impervious

[47] Hint: Peak is 113% of capacity of segment #3 [47] Hint: Peak is 113% of capacity of segment #4 [47] Hint: Peak is 113% of capacity of segment #5 [47] Hint: Peak is 113% of capacity of segment #6

[47] Hint: Peak is 113% of capacity of segment #7

0.202 af, Depth= 1.10" Runoff = 2.61 cfs @ 12.19 hrs, Volume=

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs NOAA 24-hr C 2YR STM Rainfall=3.30"

Area	(ac) C	N Desc	cription							
2.	2.200 74 >75% Grass cover, Good, HSG C									
2.	200	100.	00% Pervi							
Тс	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
4.1	41	0.0292	0.17		Sheet Flow, Sheet FLow					
					Grass: Short n= 0.150 P2= 3.30"					
0.3	163	0.0300	9.29	7.29	Pipe Channel, Pipe Flow					
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'					
					n= 0.011 Concrete pipe, straight & clean					
0.6	105	0.0030	2.94	2.31	Pipe Channel, Pipe Flow					
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'					
					n= 0.011 Concrete pipe, straight & clean					
0.1	12	0.0030	2.94	2.31	Pipe Channel, Pipe Flow					
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'					
					n= 0.011 Concrete pipe, straight & clean					
0.6	112	0.0030	2.94	2.31	Pipe Channel, Pipe Flow					
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'					
• • •	70		0.04	0.04	n= 0.011 Concrete pipe, straight & clean					
0.4	73	0.0030	2.94	2.31	Pipe Channel, Pipe Flow					
					12.0" Round Area= 0.8 st Perim= 3.1" r= 0.25					
0.0	EA	0 0000	0.04	0.04	n= 0.011 Concrete pipe, straight & clean					
0.3	51	0.0030	2.94	2.31	12.0" Dound Aroon 0.8 of Dorigon 2.11 rm 0.25					
					12.0 Round Area – 0.0 St Penini – 3.1 1– 0.25					
15	100		1 20		Dimet Entry, Grace Shellow Concentrated Flow					
2.1	109		1.20		Direct Entry, Jass Jianow Concentrated Flow					
<u> </u>	666	Total			Direct Lindy, TO make it to TO minutes					
10.0	000	rotar								

Proposed Conditions

Subcatchment 5S: Proposed Pervious

Printed 4/22/2020

Page 10

Summary for Subcatchment 6S: Proposed Pervious (Bypass)

Runoff = 0.23 cfs @ 12.16 hrs, Volume= 0.016 af, Depth= 1.10"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs NOAA 24-hr C 2YR STM Rainfall=3.30"

Area (ac)) Cl	N Desc	cription					
0.175	5 7	4 >75%	% Grass co	over, Good,	HSG C			
0.175 100.00% Pervious Area								
Tc Le (min) (ength feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
7.8	84	0.0238	0.18		Sheet Flow, Sheet Flow			
0.2	50	0.0100	5.36	4.21	Grass: Short n= 0.150 P2= 3.30" Pipe Channel, Pipe Flow 12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25' n= 0.011 Concrete pipe, straight & clean			

8.0 134 Total

Subcatchment 6S: Proposed Pervious (Bypass)

Summary for Pond 7P: REVISED WITH NEW COUNTY ROW proposed basin SPW

Inflow Are	ea =	8.223 ac, 7	3.25% Impervious,	Inflow Depth = 2		2YR STM event
Inflow	=	20.56 cfs @	12.17 hrs, Volume	= 1.742 af		
Outflow	=	4.91 cfs @	12.57 hrs, Volume	= 1.208 af	, Atten= 7	6%, Lag= 24.1 min
Primary	=	4.91 cfs @	12.57 hrs, Volume	= 1.208 af		

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 94.93' @ 12.57 hrs Surf.Area= 18,761 sf Storage= 41,307 cf

Plug-Flow detention time= 254.3 min calculated for 1.208 af (69% of inflow) Center-of-Mass det. time= 154.6 min (927.6 - 773.0)

Volume	Inve	rt Avail.Sto	rage Storage	Description	
#1	92.70	0' 222,40	66 cf Custom	Stage Data (Prismatic) Listed below	w (Recalc)
Elevatio	on s	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
92.7	70	18,219	0	0	
93.0	00	18,336	5,483	5,483	
94.0)0	18,576	18,456	23,939	
95.0	00	18,775	18,676	42,615	
96.0	00	21,216	19,996	62,610	
97.0	00	24,095	22,656	85,266	
98.0	00	27,044	25,570	110,835	
99.0	00	30,100	28,572	139,407	
100.0	00	33,263	31,682	171,089	
101.0	00	69,492	51,378	222,466	
Device	Routing	Invert	Outlet Devices	3	
#1	Primary	93.96'	29.0'' W x 6.0''	H Vert. Orifice/Grate C= 0.600	
	-		Limited to weil	^r flow at low heads	
#2	Primary	100.00'	21.0' long x 2	8.0' breadth Broad-Crested Rectar	ngular Weir
			Head (feet) 0.	20 0.40 0.60 0.80 1.00 1.20 1.4	0 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64	2.64 2.63
#3	Primary	97.70'	48.0'' x 48.0'' ł	Horiz. Top of Box C= 0.600	
			Limited to weil	⁻ flow at low heads	

Primary OutFlow Max=4.91 cfs @ 12.57 hrs HW=94.93' (Free Discharge)

-1=Orifice/Grate (Orifice Controls 4.91 cfs @ 4.06 fps)

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

-3=Top of Box (Controls 0.00 cfs)

Pond 7P: REVISED WITH NEW COUNTY ROW proposed basin SPW

Summary for Link 5L: Total Proposed Condition

Inflow Area	a =	8.398 ac, 7	1.72% Imp	ervious,	Inflow Depth >	1.75"	for 2YR STM event	
Inflow	=	4.97 cfs @	12.56 hrs,	Volume	= 1.224 ;	af		
Primary	=	4.97 cfs @	12.56 hrs,	Volume	= 1.224 a	af, Atte	n= 0%, Lag= 0.0 mir	ו

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Link 5L: Total Proposed Condition

	Proposed Conditions
Stormwater Calcs DRCC Revisions	NOAA 24-hr C 10YR STM Rainfall=5.00"
Prepared by Swalsh	Printed 4/22/2020
HvdroCAD® 10.10-3b s/n M04299 © 2020 Hvdro	CAD Software Solutions LLC Page 15
Time span=0.00)-36.00 hrs. dt=0.05 hrs. 721 points
Runoff by SCS TR	2-20 method UH=SCS Weighted-CN
Reach routing by Stor-Ind+Ti	ans method - Pond routing by Stor-Ind method
Subcatchment 4S: Proposed Impervious	Runoff Area=6.023 ac 100.00% Impervious Runoff Depth=4.76"
	Flow Length=673' Tc=10.0 min CN=98 Runoff=27.42 cfs 2.391 af
	-
Subcatchment 5S: Proposed Pervious	Runoff Area=2.200 ac 0.00% Impervious Runoff Depth=2.36"
	Flow Length=666' Tc=10.0 min CN=74 Runoff=5.74 cfs 0.433 af
Subcatchment 6S: Proposed Pervious (Byp	ass) Runoff Area=0.175 ac 0.00% Impervious Runoff Depth=2.36"
	Flow Length=134' Tc=8.0 min CN=74 Runoff=0.50 cfs 0.034 af
Pond 7P: REVISED WITH NEW COUNTY RC	W Peak Elev=95.98' Storage=62,261 ct Inflow=33.16 cts 2.824 at
	Outflow=7.74 cfs 2.290 at
Link Cha Tatal Designed Organities	
LINK 5L: Total Proposed Condition	
	Primary=7.86 CTS 2.325 at
	2 = 0

Total Runoff Area = 8.398 acRunoff Volume = 2.859 afAverage Runoff Depth = 4.08"28.28% Pervious = 2.375 ac71.72% Impervious = 6.023 ac

Summary for Subcatchment 4S: Proposed Impervious

Runoff = 27.42 cfs @ 12.17 hrs, Volume= 2.391 af, Depth= 4.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs NOAA 24-hr C 10YR STM Rainfall=5.00"

Area	(ac) C	N Desc	cription						
6	6.023 98 Paved parking & roofs								
6.023 100.00% Impervious Area									
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
1.7	150	0.0180	1.45		Sheet Flow, Sheet Flow				
0.4	314	0.0300	14.74	46.31	Smooth surfaces n= 0.011 P2= 3.30" Pipe Channel, Pipe Flow 24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'				
1.7 <u>6.2</u>	209		2.00		n= 0.011 Concrete pipe, straight & clean Direct Entry, shallow concentrated flow Direct Entry, To make it to 10 minutes				
10.0	673	Total							

Subcatchment 4S: Proposed Impervious

[47] Hint: Peak is 249% of capacity of segment #3 [47] Hint: Peak is 249% of capacity of segment #4 [47] Hint: Peak is 249% of capacity of segment #5 [47] Hint: Peak is 249% of capacity of segment #6

[47] Hint: Peak is 249% of capacity of segment #7

0.433 af, Depth= 2.36" Runoff = 5.74 cfs @ 12.18 hrs, Volume=

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs NOAA 24-hr C 10YR STM Rainfall=5.00"

Area	(ac) C	N Desc	cription						
2.	2.200 74 >75% Grass cover, Good, HSG C								
2.200 100.00% Pervious Area									
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
4.1	41	0.0292	0.17		Sheet Flow, Sheet FLow				
					Grass: Short n= 0.150 P2= 3.30"				
0.3	163	0.0300	9.29	7.29	Pipe Channel, Pipe Flow				
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'				
					n= 0.011 Concrete pipe, straight & clean				
0.6	105	0.0030	2.94	2.31	Pipe Channel, Pipe Flow				
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'				
					n= 0.011 Concrete pipe, straight & clean				
0.1	12	0.0030	2.94	2.31	Pipe Channel, Pipe Flow				
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'				
					n= 0.011 Concrete pipe, straight & clean				
0.6	112	0.0030	2.94	2.31	Pipe Channel, Pipe Flow				
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'				
				/	n= 0.011 Concrete pipe, straight & clean				
0.4	73	0.0030	2.94	2.31	Pipe Channel, Pipe Flow				
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'				
0.0	F 4	0 0000	0.04	0.04	n= 0.011 Concrete pipe, straight & clean				
0.3	51	0.0030	2.94	2.31	Pipe Channel, Pipe Flow				
					12.0° Round Area= 0.8 st Perim= 3.1° r= 0.25°				
1 5	100		4 00		n= 0.011 Concrete pipe, straight & clean				
1.0 2.4	109		1.20		Direct Entry, Grass Shahow Concentrated Flow				
<u></u>	000	Tatal			Direct Entry, To make it to To minutes				
10.0	666	lotal							

Proposed Conditions

Subcatchment 5S: Proposed Pervious

Summary for Subcatchment 6S: Proposed Pervious (Bypass)

Runoff = 0.50 cfs @ 12.15 hrs, Volume= 0.034 af, Depth= 2.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs NOAA 24-hr C 10YR STM Rainfall=5.00"

Area ((ac) C	N Desc	cription					
0.	0.175 74 >75% Grass cover, Good, HSG C							
0.	175	100.0	00% Pervi	ous Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
7.8	84	0.0238	0.18		Sheet Flow, Sheet Flow			
0.2	50	0.0100	5.36	4.21	Grass: Short n= 0.150 P2= 3.30" Pipe Channel, Pipe Flow 12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25' n= 0.011 Concrete pipe, straight & clean			

8.0 134 Total

Subcatchment 6S: Proposed Pervious (Bypass)

Summary for Pond 7P: REVISED WITH NEW COUNTY ROW proposed basin SPW

Inflow Are	ea =	8.223 ac, 7	3.25% Impervious,	Inflow Depth = 4.	12" for 10YR STM e	event
Inflow	=	33.16 cfs @	12.17 hrs, Volume	= 2.824 af		
Outflow	=	7.74 cfs @	12.58 hrs, Volume	= 2.290 af,	Atten= 77%, Lag= 24	1.5 min
Primary	=	7.74 cfs @	12.58 hrs, Volume	= 2.290 af		

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 95.98' @ 12.58 hrs Surf.Area= 21,176 sf Storage= 62,261 cf

Plug-Flow detention time= 214.8 min calculated for 2.287 af (81% of inflow) Center-of-Mass det. time= 137.3 min (904.0 - 766.7)

Volume	Inve	ert Avail.Sto	rage Storage	Description	
#1	92.7	'0' 222,40	66 cf Custom	Stage Data (Prismatic) Listed below (Recalc)	
Elevatio	n	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
92.7	'0	18,219	0	0	
93.0	00	18,336	5,483	5,483	
94.0)0	18,576	18,456	23,939	
95.0)0	18,775	18,676	42,615	
96.0	00	21,216	19,996	62,610	
97.0)0	24,095	22,656	85,266	
98.0)0	27,044	25,570	110,835	
99.0)0	30,100	28,572	139,407	
100.0)0	33,263	31,682	171,089	
101.0	00	69,492	51,378	222,466	
Device	Routing	Invert	Outlet Devices	S	
#1	Primary	93.96'	29.0" W x 6.0"	"H Vert. Orifice/Grate C= 0.600	
			Limited to weil	ir flow at low heads	
#2	Primary	100.00'	21.0' long x 2	28.0' breadth Broad-Crested Rectangular Weir	
			Head (feet) 0.	0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60	
			Coef. (English	n) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63	
#3	Primary	97.70'	48.0" x 48.0" ł	Horiz. Top of Box C= 0.600	
			Limited to weil	ir flow at low heads	

Primary OutFlow Max=7.74 cfs @ 12.58 hrs HW=95.98' (Free Discharge)

-1=Orifice/Grate (Orifice Controls 7.74 cfs @ 6.41 fps)

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 7P: REVISED WITH NEW COUNTY ROW proposed basin SPW

Summary for Link 5L: Total Proposed Condition

Inflow A	rea =	8.398 ac,	71.72% Impervious	s, Inflow Depth >	3.32" for	10YR STM event
Inflow	=	7.86 cfs @	12.54 hrs, Volum	e= 2.325	af	
Primary	/ =	7.86 cfs @	2 12.54 hrs, Volum	e= 2.325	af, Atten= 0	0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Link 5L: Total Proposed Condition

			F	Proposed Condi	tions
Stormwater Calcs DRCC Revisions		NOAA 24-hr	C 100YR	STM Rainfall=8	3.30"
Prepared by Swalsh				Printed 4/22/2	2020
HvdroCAD® 10.10-3b s/n M04299 © 2020 Hvd	roCAD Software Soli	utions LLC		Pac	ie 23
<u> </u>				<u>, aş</u>	<u>, </u>
Time span=0.0	0-36.00 hrs. dt=0.0)5 hrs. 721 po	ints		
Runoff by SCS T	R-20 method. UH=	SCS. Weighte	ed-CN		
Reach routing by Stor-Ind+1	rans method - Po	ond routing by	Stor-Ind me	thod	
Subcatchment 4S: Proposed Impervious	Runoff Area=6.	023 ac 100.00)% Impervious	s Runoff Depth=	8.06"
	Flow Length=673'	Tc=10.0 min	CN=98 Run	off=45.68 cfs 4.0	45 af
	C C				
Subcatchment 5S: Proposed Pervious	Runoff Area=	2.200 ac 0.00	0% Impervious	s Runoff Depth=	5.19"
	Flow Length=666'	Tc=10.0 min	CN=74 Rune	off=12.55 cfs 0.9	52 af
Subcatchment 6S: Proposed Pervious (By	pass) Runoff Area=	=0.175 ac 0.00	0% Impervious	s Runoff Depth=	5.19"
	Flow Length=134	4' Tc=8.0 min	CN=74 Ru	noff=1.08 cfs 0.0	76 af
Pond 7P: REVISED WITH NEW COUNTY R	OW Peak Elev=97.6	7' Storage=10	2,171 cf Inflo	ow=58.22 cfs 4.9	98 af
			Outflo	ow=10.83 cfs 4.4	64 af
				44.04.6.45	40 6
Link 5L: Total Proposed Condition				w=11.04 cfs 4.5	40 af
			Prima	ary=11.04 cfs 4.5	40 af

Total Runoff Area = 8.398 acRunoff Volume = 5.074 afAverage Runoff Depth = 7.25"28.28% Pervious = 2.375 ac71.72% Impervious = 6.023 ac

Summary for Subcatchment 4S: Proposed Impervious

Runoff = 45.68 cfs @ 12.17 hrs, Volume= 4.045 af, Depth= 8.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs NOAA 24-hr C 100YR STM Rainfall=8.30"

Area	a (ac) C	N Desc	cription						
(6.023 98 Paved parking & roofs								
(6.023	100.0	00% Impe	rvious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
1.7	150	0.0180	1.45		Sheet Flow, Sheet Flow				
0.4	314	0.0300	14.74	46.31	Smooth surfaces n= 0.011 P2= 3.30" Pipe Channel, Pipe Flow 24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'				
1.7 6.2	209		2.00		n= 0.011 Concrete pipe, straight & clean Direct Entry, shallow concentrated flow Direct Entry, To make it to 10 minutes				
10.0	673	Total							

Subcatchment 4S: Proposed Impervious

Summary for Subcatchment 5S: Proposed Pervious

Proposed Conditions

Printed 4/22/2020

Page 25

[47] Hint: Peak is 172% of capacity of segment #2 [47] Hint: Peak is 544% of capacity of segment #3 [47] Hint: Peak is 544% of capacity of segment #4 [47] Hint: Peak is 544% of capacity of segment #5 [47] Hint: Peak is 544% of capacity of segment #6

[47] Hint: Peak is 544% of capacity of segment #7

Runoff 12.55 cfs @ 12.17 hrs, Volume= 0.952 af, Depth= 5.19" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs NOAA 24-hr C 100YR STM Rainfall=8.30"

Area	(ac) C	N Desc	cription		
2.	200 7	'4 >75°	% Grass co	over, Good,	HSG C
2.	200	100.	00% Pervi	ous Area	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
4.1	41	0.0292	0.17		Sheet Flow, Sheet FLow
					Grass: Short n= 0.150 P2= 3.30"
0.3	163	0.0300	9.29	7.29	Pipe Channel, Pipe Flow
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
				/	n= 0.011 Concrete pipe, straight & clean
0.6	105	0.0030	2.94	2.31	Pipe Channel, Pipe Flow
					12.0" Round Area= 0.8 st Perim= 3.1" r= 0.25
0.4	40	0 0000	0.04	0.04	n= 0.011 Concrete pipe, straight & clean
0.1	12	0.0030	2.94	2.31	Pipe Channel, Pipe Flow
					12.0 Round Area vine streight & sleep
0.6	110	0 0030	2 04	2 21	Pine Channel Pine Flow
0.0	112	0.0030	2.94	2.31	12.0" Pound Area 0.8 of Perime 3.1' re 0.25'
					n=0.011 Concrete nine, straight & clean
04	73	0 0030	2 94	2 31	Pine Channel Pine Flow
0.4	/0	0.0000	2.04	2.01	12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011 Concrete pipe straight & clean
03	51	0 0030	2 94	2 31	Pipe Channel, Pipe Flow
0.0	• •				12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011 Concrete pipe, straight & clean
1.5	109		1.20		Direct Entry, Grass Shallow Concentrated Flow
2.1					Direct Entry, To make it to 10 minutes
10.0	666	Total			

Subcatchment 5S: Proposed Pervious

Summary for Subcatchment 6S: Proposed Pervious (Bypass)

Runoff = 1.08 cfs @ 12.15 hrs, Volume= 0.076 af, Depth= 5.19"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs NOAA 24-hr C 100YR STM Rainfall=8.30"

Area	(ac) C	N Dese	cription			
0.	175 7	74 >759	% Grass co	over, Good,	HSG C	
0.	0.175 100.00% Pervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
7.8	84	0.0238	0.18		Sheet Flow, Sheet Flow	
0.2	50	0.0100	5.36	4.21	Grass: Short n= 0.150 P2= 3.30" Pipe Channel, Pipe Flow 12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25' n= 0.011 Concrete pipe, straight & clean	

8.0 134 Total

Subcatchment 6S: Proposed Pervious (Bypass)

Summary for Pond 7P: REVISED WITH NEW COUNTY ROW proposed basin SPW

Inflow Area	a =	8.223 ac, 73.25% Impervious, Inflow Depth = 7.29" for 100YR STM event
Inflow	=	58.22 cfs @ 12.17 hrs, Volume= 4.998 af
Outflow	=	10.83 cfs @ 12.66 hrs, Volume= 4.464 af, Atten= 81%, Lag= 29.2 min
Primary	=	10.83 cfs @ 12.66 hrs, Volume= 4.464 af

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 97.67' @ 12.66 hrs Surf.Area= 26,082 sf Storage= 102,171 cf

Plug-Flow detention time= 189.7 min calculated for 4.464 af (89% of inflow) Center-of-Mass det. time= 134.8 min (894.5 - 759.6)

Volume	Invert Avail.S	torage Storage	Description		
#1	92.70' 222,	466 cf Custom	Stage Data (Prismatic)	Listed below (Recalc)	
Elevation	Surf.Area	Inc.Store	Cum.Store		
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)		
92.70	18,219	0	0		
93.00	18,336	5,483	5,483		
94.00	18,576	18,456	23,939		
95.00	18,775	18,676	42,615		
96.00	21,216	19,996	62,610		
97.00	24,095	22,656	85,266		
98.00	27,044	25,570	110,835		
99.00	30,100	28,572	139,407		
100.00	33,263	31,682	171,089		
101.00	69,492	51,378	222,466		
Device Rou	ting Inve	rt Outlet Device	S		
#1 Prim	nary 93.96	6' 29.0'' W x 6.0	" H Vert. Orifice/Grate	C= 0.600	
	-	Limited to we	ir flow at low heads		
#2 Prim	nary 100.00)' 21.0' long x 2	28.0' breadth Broad-Cre	ested Rectangular Weir	
		Head (feet)	0.20 0.40 0.60 0.80 1.0	00 1.20 1.40 1.60	
		Coef. (English	h) 2.68 2.70 2.70 2.64	2.63 2.64 2.64 2.63	
#3 Prin	1ary 97.70)' 48.0'' x 48.0''	Horiz. Top of Box C=	0.600	
		Limited to we	ir flow at low heads		

Primary OutFlow Max=10.82 cfs @ 12.66 hrs HW=97.67' (Free Discharge)

-1=Orifice/Grate (Orifice Controls 10.82 cfs @ 8.96 fps)

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Hydrograph Inflow Primary 65 58.22 cfs Inflow Area=8.223 ac 60 55 Peak Elev=97.67' 50 Storage=102,171 cf 45 40 (sj 35 30 30 25 20 15 10.83 cfs 10-5 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Time (hours)

Pond 7P: REVISED WITH NEW COUNTY ROW proposed basin SPW

Summary for Link 5L: Total Proposed Condition

Inflow /	Area =	8.398 ac, 71.72% Impervious,	Inflow Depth > 6.49	" for 100YR STM event
Inflow	=	11.04 cfs @ 12.57 hrs, Volume:	= 4.540 af	
Primar	y =	11.04 cfs @ 12.57 hrs, Volume	= 4.540 af, At	tten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Link 5L: Total Proposed Condition

Stormustor Calos DBCC Bavisions	NIDER 2 br. NUDER Mator Qua	Proposed Conditions
Stormwater Calcs DRCC Revisions	NJ DEP 2-11 NJDEP Waler Qua	Illy Storin Rainal 1/22/2020
	roCAD Software Solutions LLC	Printed 4/22/2020
HydroCAD® 10.10-30 S/ITM04299 @ 2020 Hydr	IOCAD Software Solutions LLC	Page 31
Time span=0.0 Runoff by SCS TF Reach routing by Stor-Ind+T	0-36.00 hrs, dt=0.05 hrs, 721 points R-20 method, UH=SCS, Weighted-CN Trans method - Pond routing by Stor-In	d method
Subcatchment 4S: Proposed Impervious	Runoff Area=6.023 ac 100.00% Impe Flow Length=673' Tc=10.0 min CN=98	ervious Runoff Depth=1.03" Runoff=15.52 cfs 0.519 af
Subcatchment 5S: Proposed Pervious	Runoff Area=2.200 ac 0.00% Impe Flow Length=666' Tc=10.0 min CN=74	ervious Runoff Depth=0.07" 4 Runoff=0.29 cfs 0.014 af
Subcatchment 6S: Proposed Pervious (By	pass) Runoff Area=0.175 ac 0.00% Impe Flow Length=134' Tc=8.0 min CN=74	ervious Runoff Depth=0.07" 4 Runoff=0.02 cfs 0.001 af
Pond 7P: REVISED WITH NEW COUNTY RO	OW Peak Elev=93.96' Storage=23,208 c	f Inflow=15.64 cfs 0.533 af Outflow=0.00 cfs 0.000 af
Link 5L: Total Proposed Condition		Inflow=0.02 cfs 0.001 af Primary=0.02 cfs 0.001 af
Total Dupoff Area = 8.20	$R_{22} = R_{12} = 0.534$ of $\Lambda_{12} = 0.534$	ngo Dupoff Dopth - 0.76"

Total Runoff Area = 8.398 acRunoff Volume = 0.534 afAverage Runoff Depth = 0.76"28.28% Pervious = 2.375 ac71.72% Impervious = 6.023 ac

Summary for Subcatchment 4S: Proposed Impervious

Runoff = 15.52 cfs @ 1.15 hrs, Volume= 0.519 af, Depth= 1.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs NJ DEP 2-hr NJDEP Water Quality Storm Rainfall=1.25"

Area	(ac) C	N Desc	cription		
6.	023 9	98 Pave	ed parking	& roofs	
6.	023	100.0	00% Impe	rvious Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
1.7	150	0.0180	1.45	(0.0)	Sheet Flow, Sheet Flow
0.4	314	0.0300	14.74	46.31	Pipe Channel, Pipe Flow
1.7	209		2.00		n= 0.011 Concrete pipe, straight & clean Direct Entry, shallow concentrated flow
6.2					Direct Entry, To make it to 10 minutes
10.0	673	Total			

Subcatchment 4S: Proposed Impervious

Summary for Subcatchment 5S: Proposed Pervious

Runoff = 0.29 cfs @ 1.27 hrs, Volume= 0.014 af, Depth= 0.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs NJ DEP 2-hr NJDEP Water Quality Storm Rainfall=1.25"

Area	(ac) C	N Desc	cription		
2.	200 7	4 >75%	% Grass co	over, Good,	HSG C
2.	200	100.	00% Pervi	ous Area	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
4.1	41	0.0292	0.17		Sheet Flow, Sheet FLow
					Grass: Short n= 0.150 P2= 3.30"
0.3	163	0.0300	9.29	7.29	Pipe Channel, Pipe Flow
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011 Concrete pipe, straight & clean
0.6	105	0.0030	2.94	2.31	Pipe Channel, Pipe Flow
					12.0" Round Area= 0.8 st Perim= 3.1" r= 0.25
0.4	10	0 0000	2.04	0.04	n= 0.011 Concrete pipe, straight & clean
0.1	12	0.0030	2.94	2.31	12.0" Dound Aroos 0.8 of Dorigon 2.1' rs 0.25'
					12.0 Round Area- 0.0 St Penini- 3.1 1- 0.25
0.6	112	0 0030	2 94	2 31	Pine Channel Pine Flow
0.0	112	0.0000	2.04	2.01	12.0" Round Area= 0.8 sf Perim= 3.1' $r= 0.25'$
					n= 0.011 Concrete nine, straight & clean
04	73	0 0030	2 94	2 31	Pipe Channel, Pipe Flow
0.1		0.0000	2.01	2.01	12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011 Concrete pipe, straight & clean
0.3	51	0.0030	2.94	2.31	Pipe Channel, Pipe Flow
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011 Concrete pipe, straight & clean
1.5	109		1.20		Direct Entry, Grass Shallow Concentrated Flow
2.1					Direct Entry, To make it to 10 minutes
10.0	666	Total			

Subcatchment 5S: Proposed Pervious

Hydrograph

Summary for Subcatchment 6S: Proposed Pervious (Bypass)

Runoff = 0.02 cfs @ 1.23 hrs, Volume= 0.001 af, Depth= 0.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs NJ DEP 2-hr NJDEP Water Quality Storm Rainfall=1.25"

Area (ac	:) Cl	N Desc	cription		
0.17	57	4 >75%	∕₀ Grass co	over, Good,	HSG C
0.17	5	100.0	00% Pervi	ous Area	
Tc Le (min)	ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.8	84	0.0238	0.18		Sheet Flow, Sheet Flow
0.2	50	0.0100	5 36	4 21	Grass: Short n= 0.150 P2= 3.30" Pine Channel Pine Flow
0.2	50	0.0100	0.00	7.21	12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011 Concrete pipe, straight & clean

8.0 134 Total

Subcatchment 6S: Proposed Pervious (Bypass)

Summary for Pond 7P: REVISED WITH NEW COUNTY ROW proposed basin SPW

Inflow Area	a =	8.223 ac,	73.25% Impervious,	Inflow Depth =	0.78"	for NJDEP Water (Quality Storm event
Inflow	=	15.64 cfs @	1.15 hrs, Volume	= 0.533	af		
Outflow	=	0.00 cfs @	2.51 hrs, Volume	= 0.000	af, Atte	n= 100%, Lag= 81.7	⁷ min
Primary	=	0.00 cfs @	2.51 hrs, Volume	= 0.000	af		

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 93.96' @ 2.51 hrs Surf.Area= 18,567 sf Storage= 23,208 cf

Plug-Flow detention time= 312.2 min calculated for 0.000 af (0% of inflow) Center-of-Mass det. time= 264.6 min (339.0 - 74.4)

Volume	Invei	rt Avail.Sto	rage Storage [Description		
#1	92.70	0' 222,46	66 cf Custom	Stage Data (Prismati	ic) Listed below (R	ecalc)
Elevatio	n s	Surf.Area	Inc.Store	Cum.Store		
(fee ⁻	t)	(sq-ft)	(cubic-feet)	(cubic-feet)		
92.7	0	18,219	0	0		
93.0	0	18,336	5,483	5,483		
94.0	0	18,576	18,456	23,939		
95.0	0	18,775	18,676	42,615		
96.0	0	21,216	19,996	62,610		
97.0	0	24,095	22,656	85,266		
98.0	0	27,044	25,570	110,835		
99.0	0	30,100	28,572	139,407		
100.0	0	33,263	31,682	171,089		
101.0	0	69,492	51,378	222,466		
Device	Routing	Invert	Outlet Devices	i		
#1	Primary	93.96'	29.0'' W x 6.0''	H Vert. Orifice/Grate	e C= 0.600	
	·		Limited to weir	flow at low heads		
#2	Primary	100.00'	21.0' long x 2	8.0' breadth Broad-C	Crested Rectangul	ar Weir
			Head (feet) 0.	20 0.40 0.60 0.80	1.00 1.20 1.40 1.	.60
			Coef. (English)) 2.68 2.70 2.70 2.	.64 2.63 2.64 2.64	4 2.63
#3	Primary	97.70'	48.0'' x 48.0'' H	loriz. Top of Box (C= 0.600	
			Limited to weir	flow at low heads		

Primary OutFlow Max=0.00 cfs @ 2.51 hrs HW=93.96' (Free Discharge)

-1=Orifice/Grate (Orifice Controls 0.00 cfs @ 0.08 fps)

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Hydrograph Inflow Primary 15.64 cfs 17 Inflow Area=8.223 ac 16-15 Peak Elev=93.96' 14 13-Storage=23,208 cf 12 11 10-Flow (cfs) 9 8 7 6 5 4 3-2-1 0.00 cfs 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Time (hours)

Pond 7P: REVISED WITH NEW COUNTY ROW proposed basin SPW
Summary for Link 5L: Total Proposed Condition

Inflow A	∖rea =	8.398 ac, 7	1.72% Impervious, I	nflow Depth =	0.00"	for	NJDEP	Water G	0uality S	torm event
Inflow	=	0.02 cfs @	1.23 hrs, Volume=	0.001 a	af					
Primary	/ =	0.02 cfs @	1.23 hrs, Volume=	0.001 a	af, Atte	en= 09	%, Lag=	= 0.0 mir	ı	

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Link 5L: Total Proposed Condition

STORMWATER QUALITY CALCS

4/20/2020

WATER QUALITY CALCULATIONS

High School South West Windsor Plainsboro Regional School District Block 17.13, Lot 2 VCEA Job # 1808WW.01

West Windsor Plainsboro Regional School District 321 Village Rd E, West Windsor, NJ 08550

Net New Impervious Coverage	1.57	Acres	
New Building	1.07	Acres	
New Roadway/Parking Lot	0.50	Acres	
Description	<u>Area</u>	Required TSS Removal	Area*Required
New Pavement	0.50	80	40.00
Existing Reconstructed Pavement	3.08	50	154
Total			194.00
Proposed Condition	<u>Area</u>	Provided	<u>A*P</u>
Sand Bottom Infitration	3.50	80	280.00
		Provided	280.0

Required Treatment for entire site =

Provided Treatment greater than required, therefore water quality standard is met

Average TSS Removal Rate 80%

Composite Porous & Infiltration Basin TS	S Removal Calculation
Infiltration Basin TSS Removal	80 %

Calculation Excludes Buildings and sidewalks since these are considered clean surfaces.

54%

STORMWATER BASIN REPORT SOIL INVESTIGATION AND PERMEABILITY REPORT

SOIL INVESTIGATION AND PERMEABILITY REPORT

WEST WINDSOR-PLAINSBORO HIGH SCHOOL SOUTH

PROPOSED EXPANSION

PRINCETON JUNCTION, MERCER CO., NEW JERSEY

PREPARED FOR:

MR. HERBERT SEEBURGER, P.E. VAN CLEEF ENGINEERING ASSOCIATES, LLC 4 AAA DRIVE, SUITE 103 HAMILTON, NJ 08691

> OCTOBER 3, 2019 REVISED APRIL 15, 2020

WILLIAM F. MERCURIO, P.E. NEW JERSEY PROFESSIONAL ENGINEER LICENSE NUMBER GE29247

VCEA PROJECT NUMBER: 18-08-WW-01

d:\projects\18-08-ww-01 hs south expansion\soils report\soil investigation report-rev2.docx

VanCleefEngineering.com

Please Reply To: **FREEHOLD NJ OFFICE** 3 Paragon Way, Suite 600 • Freehold NJ 07728 732.303.8700 • Fax: 732.303.8710 With Other Offices In: Hillsborough NJ • Lebanon NJ • Mt. Arlington NJ • Phillipsburg NJ Toms River NJ • Hamilton NJ • Doylestown PA • Bethlehem PA Mechanicsburg PA • Leesport PA • Newark DE

TABLE OF CONTENTS

<u>SECTION</u>

1.0	NJ STORMWATER STANDARDS1										
2.0	SOILS	SINVESTIGATION	1								
	2.1	SOIL PROFILE PITS	1								
	2.2	SOIL BORINGS 2019	1								
	2.3	SOIL BORINGS 2020	1								
3.0	SOIL	CLASSIFICATION	2								
4.0	GENE	RAL SITE GEOLOGY	2								
5.0	SEAS	ONAL HIGH WATER TABLE	2								
	5.1	2019	3								
	5.2	2020	4								
6.0	GENE	RAL	4								
<u>Appen</u>	<u>idix</u>	A	ppendix No.								

Soil Investigation Location Plan (Figure 1)	А
USDA-NRCS Web Soil Survey Map (Figure 2)	А
Soil Profile Pit Logs (SP-1 through SP-6)	В
Soil Boring Logs (B-1 through B-7 and B-101 and B-102)	В
	-

1.0 NJ STORMWATER STANDARDS

The NJDEP Stormwater Management rules, N.J.A.C. 7:8 specify stormwater management standards that are mandatory for new major development. The New Jersey Stormwater BMP Manual was developed to provide guidance to address the standards in the Stormwater Management Rules, N.J.A.C. 7:8. The BMP manual provides examples and testing methods to meet the standards contained in the rule. The testing methods referenced in the BMP manual are one way of achieving the standards. The BMP Manual was developed by the New Jersey Department of Environmental Protection, in coordination with the New Jersey Department of Agriculture, the New Jersey Department of Community Affairs, the New Jersey Department of Transportation, municipal engineers, county engineers, consulting firms, contractors, and environmental organizations.

2.0 SOILS INVESTIGATION

2.1 SOIL PROFILE PITS

In order to identify the subsurface conditions within the anticipated stormwater management areas, Van Cleef Engineering Associates' (VCEA) subcontractor, F.S. Lutzky, Inc. of Hillsborough, New Jersey, performed a subsurface investigation on July 17 and 18, 2019 using a John Deere backhoe. The investigation included excavating four (4) soil profile pits. These soil profile pits are identified as SP-1 through SP-4. The soil profile pit locations are shown on the attached Soil Investigation Location Plan–Figure 1.

VCEA performed the soils investigation for the proposed infiltration basins in accordance with NJDEP N.J.A.C. 7:8 Stormwater Management (June 2016) and the NJ Stormwater BMP Manual (November 2016).

2.2 SOIL BORINGS 2019

In order to determine the subsurface conditions at the proposed expansion, VCEA's subcontractor, Sano Drilling, Inc. of Sewell, New Jersey, performed a subsurface investigation on July 9, 2019 using a truck mounted drill rig. The investigation included advancing seven (7) Standard Penetration Test (SPT) borings. These borings are identified as B-1 through B-7. The borings were drilled to a maximum depth of 20 feet below the existing ground surface utilizing the hollow stem auger drilling method. The boring locations are shown on the attached Soil Investigation Location Plan– Figure 1.

During the execution of the soil boring work, a field engineer from VCEA was present to monitor the drilling work, receive samples, prepare boring logs, and record all pertinent data. Detailed logs are presented in Appendix B of this report.

2.3 SOIL BORINGS 2020

In order to identify the subsurface conditions within the anticipated stormwater management basin, VCEA's subcontractor, Sano Drilling, Inc. of Sewell, New Jersey, performed a subsurface investigation on March 18, 2020 using a track mounted drill

rig. The investigation included advancing two (2) Standard Penetration Test (SPT) borings. These borings are identified as B-101 and B-102. The borings were drilled to depths of 13 and 14 feet, respectively, below the existing ground surface utilizing the hollow stem auger drilling method. Since the seasonal high water table (SHWT) at B-101 was encountered in the 12 to 14-foot SPT sample at 13 feet. The augers were only advanced to a depth of 13 feet in order to run the percolation test at the same depth as the SHWT. The boring locations are shown on the attached Soil Investigation Location Plan– Figure 1.

VCEA performed the soils investigation for the proposed infiltration basins in accordance with NJDEP N.J.A.C. 7:8 Stormwater Management (June 2016) and the NJ Stormwater BMP Manual (November 2016).

3.0 SOIL CLASSIFICATION

The soils encountered during this investigation are consistent with the soil mapping from the USDA-NRCS Web Soil Survey of Mercer County, New Jersey. The USDA-NRCS Web Soil Survey Map is attached as Figure 2.

Sassafras Sandy Loams

According to the Soil Survey, soil profile pits **SP-1** through **SP-6** were performed at the locations mapped as the Sassafras Sandy Loams (SacA and SacB). The Sassafras sandy loams consist of deep, well drained soils that formed from loamy fluviomarine deposits. Permeability in these soils is moderate.

4.0 GENERAL SITE GEOLOGY

The general site geology information was obtained from the "Engineering Soil Survey of New Jersey, Report Number 34, Mercer County," prepared by Rutgers, The State University of New Jersey, May 1955.

The soils at this site are mapped with the symbol "AM-4" designating a discontinuous mantle of alluvial material deposited during the Quaternary period. The soils are an assorted material composed of silt with minor amounts of intermixed sand and gravel. The silty soil overlies coarser, stratified material consisting of intermixed sand and gravel with occasional boulders in some places. The depth to bedrock is usually greater than 10 feet.

5.0 SEASONAL HIGH WATER TABLE

The depth to a seasonal high water table (SHWT) as evidenced by redoximorphic features (drainage mottling) and depth to observed seepage (groundwater) is provided in Table 1.0 below.

Soil Profile Pit No.	Surface Elevation (Feet)	SHWT Depth (Feet)	SHWT Elevation (Feet)	Groundwater Depth (Feet)	Groundwater Elevation (Feet)
SP-1	101.0	N/E		N/E	
SP-2	101.0	N/E		N/E	
SP-3	96.0	6.0	90.0	N/E	
SP-4	93.0	3.0	90.0	6.0	87.0
SP-5	103.0	13.0	90.0	N/E	
SP-6	105.0	N/E		N/E	
B-1	100.0	10.0	90.0	13.0	87.0
B-2	99.0	9.0	90.0	13.0	86.0
B-3	99.0	9.0	90.0	13.0	86.0
B-4	99.0	9.0	90.0	13.0	86.0
B-5	101.0	10.0	91.0	13.0	87.0
B-6	100.0	10.0	90.0	13.0	87.0
B-7	100.0	10.0	90.0	13.0	87.0
B-101			See SP-5		
B-102			See SP-6		

Table 1.0

Based on the data from our subsurface investigations and local geology, VCEA believes the depths to SHWT and groundwater in the soil profile pits and borings to be representative of the site conditions. VCEA recommends using the SHWT of EL 90.0 identified in the soil profile pits and soil borings for stormwater management design.

5.0 Permeability Testing

5.1 2019

VCEA performed four (4) in-situ percolation tests (SP-1 through SP-4) on July 17 and 18, 2019. All percolation tests were performed in accordance with section B1 – Percolation Test, Addendum to Appendix E of the NJ Stormwater BMP Manual (November 2016). In order to perform the percolation test, a separate test pit was excavated then a post hole digger was used to excavate an 10-inch diameter hole 1.0 feet (12 inches) deep.

At the time this investigation was performed the size and location of the proposed stormwater basin had not been determined.

5.2 2020

Based on the square footage of the proposed stormwater basin, compliance with NJDEP Stormwater Management standards required performing three (3) soil profile pits and/or borings and three (3) permeability tests.

Once the proposed stormwater basin location was determined, only SP-2 was located within the footprint. Therefore, two (2) additional tests within the proposed stormwater basin were needed to meet NJDEP Stormwater Management testing requirements.

VCEA performed the two (2) additional borings and in-situ percolation tests on March 18 and 19, 2020. A 4 $\frac{1}{4}$ inch ID (8 inch OD) hollow stem auger was advanced to the required testing depth for soil borings SP-5 and SP-6. The depth of test represents the bottom of the test hole. All testing was performed in accordance with section B1 – Percolation Test, Addendum to Appendix E of the NJ Stormwater BMP Manual (November 2016). Table 2.0 below presents the permeability rates at each percolation test location.

Soil	Test	Test	In-Situ	Soil	Hydraulic
Profile	Depth	Elevation	Rate	Permeability	Soil
Pit No.	(inches)	(Feet)	(in/hr)	Class	Group
SP-1	24	99.0	0.417	K3	С
SP-2	24	99.0	0.417	K3	С
SP-3	12	95.0	0.417	K3	С
SP-4	12	92.0	0.417	К3	С
SP-5	156	90.0	0.733	K3	С
SP-6	168	91.0	0.440	К3	С

Table 2.0

6.0 GENERAL

The scope of our services did not include any environmental assessment or investigation for the presence or absence of hazardous, radioactive or toxic materials in the soil, groundwater, or surface water within or beyond the site studied.

APPENDIX B

Soil Profile Description Sheet

Test Pit #: SP-1

Project Name: High School South Addition

Project Number: 18-08-WW.01

Surface Elevation: 101 +/-

Soil mapped: Sassafras sandy loam (SacA)

Soil classified: Sandy loam

Date: 7/17/2019

Tested by: E. DeRicco

Depth to Redoximorphic Features: N/E

Depth to Seeps: <u>N/E</u>

Horizon	Depth (inches)	Color	Texture	Rock Fragments		:	Structure		Soil	Redo		Boundary		
Holizon				<u>Size</u>	<u>Quantity (%)</u>	<u>Grade</u>	<u>Size</u>	<u>Type</u>	Consistence	Color(s)	Abundance	<u>Size</u>	<u>Contrast</u>	Boundary
Ар	0-12	10YR 4/4	sandy loam			1	f-m	g	very friable					clear/smooth
Bt1	12-18	10YR 5/6	sandy loam			1	m	sbk	friable					gradual/wa∨y
Bt2	18-28	10YR 5/8	sandy clay loam	f-c	10	2	m	sbk	friable					diffuse/wa∨y
BC	28-40	10YR 5/6	loamy sand	f-c	10	1	m	sbk	friable					diffuse/wa∨y
C1	40-58	10YR 5/8	loamy sand	f-c	10	1	m	m	very friable					diffuse/wa∨y
C2	58-84	7.5YR 5/8	loamy sand	f-c	20	1	m	sg	very friable					

Notes:

Perc test run at 24" (EL 99) Percolation Testing (NJ Storwater BMP, Appendix E) Legend Date Time <u>Note</u> Structure 7/17/2019 1030 Start presoak Grade Size Type 7/18/2019 1320 No water reamining 0-Structureless vf-very fine abk-angular blocky sbk-subangular blocky 1321 7/18/2019 Start test 1-Weak f-fine gr-granular sg-single-grained 7/18/2019 1351 0.5 2-Moderate m-medium m-massive **Table 2: Parameter 'a' Values** K = -a[Equation 1] -in / hr for Equation 1 7/18/2019 1421 0.5 3-Strong pl-platy co-coarse Bottom Width Parameter p_m 7/18/2019 1451 0.5 (inch) 'a' vc-very coarse pr-prismatic 8 22 Where $p_m =$ percolation rate in **minutes** 23.5 25 7/18/2019 1521 0.5 9 per inch 10 11 parameter from the Table 2 a = 7/18/2019 1551 0.5 26.3 (depending on the bottom 12 27.5 PASS width of the percolation hole)

From Table 2

K= 25/60

K= 0.417 in/hr

Soil Profile Description Sheet Test Pit #: SP-2

Project Name: High School South Addition

Project Number: 18-08-WW.01

Surface Elevation: 101 +/-

Soil mapped: Sassafras sandy loam (SacA)

Soil classified: Sandy loam

Date: 7/17/2019

Tested by: E. DeRicco

Depth to Redoximorphic Features: N/E

Depth to Seeps: N/E

Horizon	Depth (inches)	Color	Texture	Rock Fragments		Structure		Soil	Redo		Boundary			
Holizon				<u>Size</u>	<u>Quantity (%)</u>	<u>Grade</u>	<u>Size</u>	<u>Type</u>	Consistence	Color(s)	Abundance	<u>Size</u>	<u>Contrast</u>	Boundary
Ар	0-12	10YR 4/4	sandy loam			1	f-m	g	very friable					clear/smooth
Bt1	12-18	10YR 5/6	sandy loam			1	m	sbk	friable					gradual/wa∨y
Bt2	18-24	10YR 5/8	sandy clay loam	f-c	10	2	m	sbk	friable					diffuse/wa∨y
BC	24-39	10YR 5/6	loamy sand	f-c	10	1	m-c	sbk	friable					diffuse/wa∨y
C1	39-57	10YR 5/8	loamy sand	f-c	10	1	m	m	very friable					diffuse/wa∨y
C2	57-84	7.5YR 5/8	loamy sand	f-c	20	1	m	sg	very friable					

Notes:

Perc test run at 24" (EL 99) Percolation Testing (NJ Storwater BMP, Appendix E) Legend Date Time <u>Note</u> Structure 7/17/2019 1034 Start presoak Tuno Grade Size No water reamining 7/18/2019 1324 0-Structureless vf-very fine abk-angular 7/18/2019 1325 Start test 1-Weak f-fine gr-granular 7/18/2019 1355 0.5 2-Moderate m-medium m-massive 7/18/2019 1425 0.5 3-Strong pl-platy co-coarse 7/18/2019 1455 0.5 vc-very coarse pr-prismatic

7/18/2019 1525 0.5 0.5

7/18/2019 1555

PASS

From Table 2 K= 25/60

	<u>Type</u>		
blocky	sbk-subangular blocky		
	sg-single-grained		
	$K = \frac{a}{m} in / hr$ [Equation 1]	Table 2: Paramete for Equati	er 'a' Values on 1
:	p_m	Bottom Width (inch)	Parameter 'a'
	Where $p_m =$ percolation rate in minutes per inch	8 9	22 23.5
	a = parameter from the Table 2 (depending on the bottom	10	25 26.3
	width of the percolation hole)	12	27.5

Soil Profile Description Sheet Test Pit #: SP-3

Project Name: High School South Addition

Project Number: 18-08-WW.01

Surface Elevation: 96 +/-

Soil mapped: Sassafras sandy loam (SacB)

Soil classified: Sandy loam

Date: 7/17/2019

Tested by: E. DeRicco

Depth to Redoximorphic Features: 72"

Depth to Seeps: N/E

Horizon	Depth (inches)	Color	Texture	Rock Fragments		Structure		Soil	Redo		Boundary			
Holizon				<u>Size</u>	Quantity (%)	<u>Grade</u>	<u>Size</u>	<u>Tvpe</u>	Consistence	Color(s)	Abundance	<u>Size</u>	<u>Contrast</u>	Boundary
Ap	0-7	10YR 4/4	sandy loam			1	f-m	g	very friable					clear/smooth
Bt1	12-16	10YR 5/6	sandy loam			1	m	sbk	friable					gradual/wavy
Bt2	16-24	10YR 5/8	sandy clay loam	f-c	10	2	m	sbk	friable					diffuse/wa∨y
BC	24-38	10YR 5/6	loamy sand	f-c	10	1	m-c	sbk	friable					diffuse/wa∨y
C1	38-58	10YR 5/8	sand	f-c	10	1	m	m	very friable					diffuse/wa∨y
C2	58-80	7.5YR 5/8	sand	f-c	20	1	m	sg	very friable	2.5Y 7/2	many	med	prom	

Notes:

Perc test run at 12" (EL 95) Percolation Testing (NJ Storwater BMP, Appendix E) Legend Date Time <u>Note</u> Structure 7/17/2019 1039 Start presoak Grade Size Type 7/18/2019 1329 No water reamining 0-Structureless vf-very fine abk-angular blocky sbk-subangular blocky 1330 7/18/2019 Start test 1-Weak f-fine gr-granular sg-single-grained 7/18/2019 1400 0.5 2-Moderate m-medium m-massive **Table 2: Parameter 'a' Values** K = -a[Equation 1] -in / hr for Equation 1 7/18/2019 1430 0.5 3-Strong pl-platy co-coarse Bottom Width Parameter p_m 7/18/2019 1500 0.5 (inch) 'a' vc-very coarse pr-prismatic 8 22 Where $p_m =$ percolation rate in **minutes** 23.5 25 7/18/2019 1530 0.5 9 per inch 10 11 parameter from the Table 2 a = 7/18/2019 1600 0.5 26.3 (depending on the bottom 12 27.5 PASS width of the percolation hole)

From Table 2

K= 25/60

Soil Profile Description Sheet Test Pit #: SP-4

Project Name: High School South Addition

Project Number: 18-08-WW.01

Surface Elevation: 93 +/-

Soil mapped: Sassafras sandy loam (SacA)

Soil classified: Sandy loam

Date: 7/17/2019

Tested by: E. DeRicco

Depth to Redoximorphic Features: 36"

Depth to Seeps: 72"

Horizon	Depth	Color	Toxturo	Rock Fr	agments	:	Structur	e	Soil	Redo	ximorphic I	eatures		Boundary
Holizon	(inches)	00101	Texture	<u>Size</u>	<u>Quantity (%)</u>	<u>Grade</u>	<u>Size</u>	<u>Type</u>	Consistence	Color(s)	Abundance	<u>Size</u>	<u>Contrast</u>	Boundary
Ар	0-10	10YR 4/4	sandy loam			1	f-m	g	very friable					clear/smooth
Bt1	10-17	10YR 5/6	sandy loam			1	m	sbk	friable					gradual/wavy
Bt2	17-29	10YR 5/8	sandy clay loam			2	m	sbk	friable					diffuse/wavy
BC	29-36	10YR 5/6	loamy sand			1	m-c	sbk	friable					diffuse/wa∨y
C1	36-58	10YR 5/8	loamy sand			1	m	m	very friable	2.5Y 7/2	many	med	prom	diffuse/wa∨y
C2	58-80	7.5YR 5/8	loamy sand			1	m	sg	very friable	2.5Y 7/2	many	med	prom	

Notes:

Perc test run at 12" (EL 92) Percolation Testing (NJ Storwater BMP, Appendix E)

Percolatio	n Testing	(NJ Storwater BMP, Appendix E)		Legend				
<u>Date</u>	<u>Time</u>	Note		Structure				
7/17/2019	1044	Start presoak	<u>Grade</u>	<u>Size</u>		<u>Type</u>		
7/18/2019	1334	No water reamining	0-Structureless	vf-very fine	abk-angular blocky	sbk-subangular blocky		
7/18/2019	1335	Start test	1-Weak	f-fine	gr-granular	sg-single-grained		
7/18/2019	1405	0.5	2-Moderate	m-medium	m-massive	0	Table 2: Parameter '	a' Values
7/18/2019	1435	0.5	3-Strong	co-coarse	pl-platy	$K = \frac{\alpha}{n} in / hr$ [Equation 1]	for Equation Bottom Width F	1 Parameter
7/18/2019	1505	0.5		vc-very coarse	pr-prismatic	P m	(inch)	'a'
7/18/2019	1535	0.5				Where p_m = percolation rate in minutes per inch	9	23.5
7/18/2019	1605	0.5				a = parameter from the Table 2 (depending on the bottom)	10	26.3
		PASS				width of the percolation hole)	12	27.5
From Table	2							

K= 25/60

Soil Profile Description Sheet

Test Pit #: SP-5 B-101

Project Name: High School South Addition

Project Number: 18-08-WW.01

Surface Elevation: 103 +/-

Soil mapped: Sassafras sandy loam (SacA)

Soil classified: Sandy loam

Date: 3/18/2020

Tested by: E. DeRicco

Depth to Redoximorphic Features: 156"

Depth to Seeps: N/E

Horizon	Depth	Color	Toxturo	Rock Fr	ragments	:	Structur	e	Soil	Redo	ximorphic	Features		Poundary
Homzon	(inches)	COIOI	Texture	<u>Size</u>	Quantity (%)	<u>Grade</u>	<u>Size</u>	<u>Tvpe</u>	Consistence	Color(s)	Abundance	<u>Size</u>	<u>Contrast</u>	Boundary
Ар	0-8	10YR 4/4	sandy loam			1	f-m	g	very friable					clear/smooth
Bt1	8-18	10YR 5/6	sandy loam			1	m	sbk	friable					gradual/wavy
Bt2	18-24	10YR 5/8	sandy clay loam	f-c	10	2	m	sbk	friable					diffuse/wavy
BC	24-39	10YR 5/6	loamy sand	f-c	10	1	m-c	sbk	friable					diffuse/wa∨y
C1	39-57	10YR 5/8	loamy sand	f-c	10	1	m	m	very friable					diffuse/wa∨y
C2	57-122	7.5YR 5/8	loamy sand	f-c	10	1	m	sg	very friable					diffuse/wavy
C3	122-168	7.5YR 5/8	loamy sand	f-c	10	1	m	sg	very friable	2.5Y 7/2	many	med	prom	

Notes:

Perc test run at 156" (EL 90) Percolation Testing (NJ Storwater BMP, Appendix E)

Date	Time	<u>Note</u>		Structure			
3/18/2020	0934	Start presoak	<u>Grade</u>	Size		<u>Type</u>	
3/19/2020	0936	No water reamining	0-Structureless	vf-very fine	abk-angular blocky	sbk-subangular	blocky
3/19/2020	0940	Start test	1-Weak	f-fine	gr-granular	sg-single-graine	d
3/19/2020	1010	1.00	2-Moderate	m-medium	m-massive	9	Table 2: Parameter 'a' Values
3/19/2020	1040	1.00	3-Strong	co-coarse	pl-platy	$K = \frac{d}{p} in / hr$ [Equation 1]	for Equation 1 Bottom Width Parameter
3/19/2020	1110	1.00		vc-very coarse	pr-prismatic	P_m	(inch) 'a'
3/19/2020	1140	1.00				Where p_m = percolation rate in minut per inch	es 9 23.5
3/19/2020	1210	1.00				a = parameter from the Table (depending on the bottom)	10 25 11 26.3
		PASS				width of the percolation h	iole) 12 27.5
From Table	2						
		14 0 700 1 //					

Legend

K= 22/30

Soil Profile Description Sheet

Test Pit #: SP-6

B-101

Project Name: High School South Addition

Project Number: 18-08-WW.01

Surface Elevation: 105 +/-

Soil mapped: Sassafras sandy loam (SacA)

Soil classified: Sandy loam

Date: 3/18/2020

Tested by: E. DeRicco

Depth to Redoximorphic Features: N/E

Depth to Seeps: <u>N/E</u>

Horizon	Depth	Color	Toxturo	Rock Fr	ragments	:	Structur	e	Soil	Redo	ximorphic	Features		Boundary
Holizon	(inches)	00101	Texture	<u>Size</u>	Quantity (%)	<u>Grade</u>	<u>Size</u>	<u>Type</u>	Consistence	Color(s)	Abundance	<u>Size</u>	<u>Contrast</u>	Boundary
Ap	0-8	10YR 4/4	sandy loam			1	f-m	g	very friable					clear/smooth
Bt1	8-18	10YR 5/6	sandy loam			1	m	sbk	friable					gradual/wa∨y
Bt2	18-27	10YR 5/8	sandy clay loam	f-c	10	2	m	sbk	friable					diffuse/wa∨y
BC	27-40	10YR 5/6	loamy sand	f-c	10	1	m	sbk	friable					diffuse/wa∨y
C1	40-58	10YR 5/8	loamy sand	f-c	10	1	m	m	very friable					diffuse/wa∨y
C2	58-96	7.5YR 5/8	loamy sand	f-c	10	1	m	sg	very friable					diffuse/wa∨y
C3	96-168	7.5YR 5/8	loamy sand	f-c	10	1	m	sg	very friable					

Notes:

Perc test run at 168" (EL 91) Percolation Testing (NJ Storwater BMP, Appendix E) Legend Date Time <u>Note</u> Structure 7/17/2019 1037 Start presoak Grade Size Type 7/18/2019 1038 No water reamining 0-Structureless vf-very fine abk-angular blocky sbk-subangular blocky 7/18/2019 1045 Start test 1-Weak f-fine gr-granular sg-single-grained 7/18/2019 1115 0.6 2-Moderate m-medium m-massive **Table 2: Parameter 'a' Values** K = -a[Equation 1] -in / hr for Equation 1 7/18/2019 0.6 3-Strong 1145 pl-platy co-coarse Bottom Width Parameter p_m 7/18/2019 1215 0.6 (inch) 'a' vc-very coarse pr-prismatic 8 22 Where $p_m =$ percolation rate in **minutes** 23.5 25 7/18/2019 1245 0.6 9 per inch 10 11 parameter from the Table 2 a = 7/18/2019 1315 0.6 26.3 (depending on the bottom 12 27.5 PASS width of the percolation hole)

From Table 2

K= 25/50

Boring # B-1 Page 1 of 1

Dril Dril Dril Cas Dril	ling ling ling sing ling	Con Rig Met Size Equ	tractor: Operator: hod: ^{31/4} /Type: /	Sanc N. 4" HS Mobi	Drilli Paris A le B-{	ing, li sano 57	nc.			Project: West Windson Project Number: 18- Project Location: 34 Project Location: 34 Boring Location: Set	r-Plain -08-W 16 Cla rincetc ee Tes	isboro W-01 rksvil on Jui it Bor	le Road nction, NJ ing Location Plan
CM	Rep	orese	entative:	E. D	eRico	00				GROUNDWATER OBSERVATIONS			DEPTH (FEET)
Dat	es:	Star	ted: 7/9/2	019						$\mathbf{\nabla}$ Encountered: 7/9/2019			13
	Cor	nple	ted: 7/9/2	2019		_				Completion: 7/9/2019			13
Gro	und	Sur	face Eleva	tion	(ft):	±	100			🛛 🖳 24 Hour Reading:			
epth (ft)	ole No.	(ery (ft) S	Resist. (6 in.)	alue	Ro .oN (ck C (%)	ore (%) (hic Symbol	RATUM	MATERIAL DESCRIPTION	levation	r Cont. (%)	REMARKS
	Samp	Recov	Pen. I (blows	∧ N	Rur	Rec	RQI	Grap	ST		Ш	Wate	
			3					<u>×' '⁄</u>		6 inches TOPSOIL.			
	S1		5-10-10	15						Brown coarse to fine SAND, little coarse to fine Gravel, little Silt. (SM)			
	S2		10-10-10-10	20						Orange brown coarse to fine SAND, some Silt, little medium to fine Gravel. (SM)			
- 5 -	S3		4-6-6-8	12						Same, some coarse to fine Gravel.	- 95 -		
	S4		11-8-8-7	16					А	Brown coarse to fine SAND, little Silt, trace medium to fine Gravel. (SM)			ALLUVIAL SAND
	S5		11-9-13-11	22						Orange brown coarse to fine SAND, some Silt, little coarse to fine Gravel. (SM)			
-10- 											- 90 - 	Ţ	Soil mottling @ 10.0'
	S6		9-9-11-11	20						Same.			
 - 20-										Bottom of Boring at 15'	 - 80 -		

Boring # B-2

<u> </u>													Faye I UI I
Dril	ling	Con	tractor:	Sano	Drilli	ing, li	nc.			Project: West Windson	r-Plain	sbor	o High School South
Dril	ling	Rig	Operator:	N.	Paris	sano				Project Number: 18-	·08-W	W-01	
Dril	ling	Met	hod: 31/	4" HS	SA					Van Cleef Project Location: 34	16 Cla	rksvil	le Road
Cas	sing	Size	/Type: /							ENGINEERING ASSOCIATES, LLC	inceto	n Ju	nction, NJ
Dril	ling	Equ	ipment:	Mobi	le B-	57				Boring Location: Se	e les	t Bor	ing Location Plan
Cw	Rep	orese	entative:	E. D	eRico	00				GROUNDWATER OBSERVATIONS			DEPTH (FEET)
Dat	es:	Star	ted: 7/9/2	2019						2 Encountered: 7/9/2019			13
	Cor	nple	ted: //9/2	2019			~~			Completion: 7/9/2019			13
Gro	und	Sur	face Eleva	tion	(ft):	±	99			I ⊈ 24 Hour Reading:		i	
		So	il Samples		Ro	ck C	ore	B				(%	
epth (ft)	ole No.	very (ft)	Resist. s / 6 in.)	/alue	.No.	c (%)	Q (%)	hic Sym	FRATUN	MATERIAL DESCRIPTION	levation	er Cont. (REMARKS
	Sam	Reco	Pen. (blows	Ń	Rur	Re	Ro	Grap	S			Wate	
			8					<u>×' '/</u>		6 inches TOPSOIL.			
	S1		10-8-11	18						Orange brown medium to fine SAND, some Silt, little coarse to fine Gravel. (SM)			
	S2		11-8-8-11	16						Same.			
- 5 -	S3		7-10-8-7	18						Orange brown coarse to fine SAND, little medium to fine Gravel, little Silt. (SM)	- 95 -		
	S4		2-5-3-3	8					A	Same.			ALLUVIAL SAND
	S5		2-2-2-4	4						Orange brown coarse to fine SAND, little Silt, trace medium to fine Gravel. (SM)	- 90 -		Soil mottling @ 9.0'
- 10-													
	S6		5-10-9-10	19						Brown coarse to fine SAND, some coarse to fine Gravel, little Silt. (SM)	- 85 -		
										Bottom of Boring at 15'			
-											┝╶┤		
L_													
											7		
											┟╶┤		
F -											- 80 -		
-20-											ĻJ		
[
+ -											┟╶┤		
-													

Boring # B-3 Page 1 of 1

Dril Dril Dril Cas Dril	ling ling ling ing ling Rer	Con Rig Met Size Equ	tractor: Operator: hod: 31/ /Type: / ipment:	Sanc N. 4" HS Mobi	Drill Paris A	ing, li sano 57	nc.			Project: West Windson Project Number: 18 Project Location: 34 Project Location: 54 Boring Location: 54	r-Plain -08-W 46 Clai rinceto ee Tes	sbord W-01 rksvil on Jur t Bor	b High School South le Road nction, NJ ing Location Plan
Date	es:	Star	ted: 7/9/2	2019						∇ Encountered: 7/9/2019			13
	Cor	nple	ted: 7/9/2	2019						Completion: 7/9/2019			13
Gro	und	Sur	face Eleva	tion	i (ft):	: ±	99		1	🛛 🖳 24 Hour Reading:			
		So	il Samples		Ro	ck C	ore	lodr	5			(%)	
Depth (ft)	Sample No.	Recovery (ft)	Pen. Resist. (blows / 6 in.)	N Value	Run No.	Rec (%)	RQD (%)	Graphic Syn	STRATU	MATERIAL DESCRIPTION	Elevatior	Water Cont.	REMARKS
	S1		2-7-8-10	15						Brown coarse to fine SAND, some Silt, trace coarse to fine Gravel. (SM)			
	S2		7-8-11-11	19						Same.			
- 5 -	S3		5-5-6-7	11					А	Same, Dark brown.			ALLUVIAL SAND
	S4		8-9-7-13	16						Same, Light gray to orange brown.			
	S5		7-4-5-6	9						Light gray to orange brown coarse to fine SAND, little Silt. (SP)	- 90 -		Soil mottling @ 9.0'
	S6		4-5-5-4	10					А	Same.			ALLUVIAL SAND
												-	
	S7		3-5-6-6	11						Same.	- 85 -	¥	
										Bottom of Boring at 15			
-													
F -											- 80 -		
-20-													

Boring # B-4 Page 1 of 1

Dril Dril	ling ling	Cor Rig	ntractor: Operator:	Sanc N.	Drilli Paris	ing, li sano	nc.			Project: West Windso Project Number: 18	r-Plain -08-W	isbor W-01	o High School South
Dril	ling	Met	hod: 31/4	4" HS	SA					Van Cleef Project Location: 34	46 Cla	rksvil	le Road
Cas	ing	Size	/Type: /							ENGINEERING ASSOCIATES, LLC	rinceto	n Ju	nction, NJ
Dril	ling	Equ	ipment:	Mobi	le B-	57				Boring Location: Se	e les	t Bor	
	Rep os:	ores(Star	entative: ted: 7/9/2	E.D 019	erico	0							
Dai	es. Cor	otar nnle	ted: 7/9/2	2019						\checkmark Encountered: 7/9/2019			13
Gro	ound	Sur	face Eleva	tion	(ft):	±	99			V 24 Hour Reading:			13
		So	il Samples		Ro	ck C	ore	_				<u>.</u>	
Depth (ft)	mple No.	covery (ft)	n. Resist. ws / 6 in.)	l Value	Run No.	Rec (%)	(%)	aphic Symb	STRATUM	MATERIAL DESCRIPTION	Elevation	ater Cont. (%	REMARKS
	Sa	Re	Pe (blo	_			œ	Ū				Ň	
	S1		2-28-42-14	70						Light gray to brown coarse to fine SAND, some coarse to fine Gravel, little Silt. (SM)			
	S2		15-14-13-12	27						Orange brown coarse to fine SAND, some Silt, trace medium to fine Gravel. (SM)			
- 5 -	- S3		7-5-4-4	9						Same.	- 95 -		
	S4		7-8-7-7	15					А	Same.			ALLUVIAL SAND
	S5		7-9-10-10	19						Same.	- 90 -		Soil mottling @ 9.0'
	S6		1-3-3-4	6						Yellow brown coarse to fine SAND, little fine Gravel, trace Silt. (SP)	- 85 -	_	
									А				ALLUVIAL SAND
	S7		3-3-3-4	6						Same.	- 80 -		
										Bottom of Boring at 20'			

Boring # B-5 Page 1 of 1

		<u></u>	4	Sev.	. D.:						• DI- 1	a ha c	
	ing	Cor	itractor:	Sanc	Driili Daria	ng, II	nc.			Project: vvest vvinaso	r-Plain		o High School South
	ling	RIG	Operator:	וא. איי גוס	Park 2A	sano				Project Number: 10	-00-VV 46 Cla	vv-Ui rkovil	lo Pood
	ing ing	iviet Sizo		+ 110						ENGINEERING ASSOCIATES LIC	40 Cia rincoto	n svii m lui	
	ling	SIZE	inment:	Mohi	le R-f	57				Boring Location: Se	e Tes	t Bor	ing Location Plan
	Ror	Equ	antativo:	F D	eRico	20							
Date	ve.	Star	ted: 7/9/2	2019						GROUNDWATER OBSERVATIONS			
Dut	Cor	nole	ted: 7/9/2	2019						$\stackrel{\scriptstyle \sim}{=}$ Encountered: 7/9/2019			14
Gro	und	Sur	face Eleva	tion	(ft):	±	101			V 24 Hour Peading:			14
		50	il Samnles		Ro	ck C	ore	_					
Depth (ft)	Sample No.	secovery (ft)	Pen. Resist.	N Value	Run No.	Rec (%)	RQD (%)	Graphic Symbo	STRATUM	MATERIAL DESCRIPTION	Elevation	Water Cont. (%	REMARKS
		ш.	4 ()					<u>7,1</u> 7	}	6 inches TOPSOIL.			
	S1		2-5-7-7	12						Brown coarse to fine SAND, little medium to fine Gravel, little Silt. (SM)	-100-		
	S2		9-8-6-6	14						Gray brown coarse to fine SAND, some Silt. (SM)			
- 5 -	S3		4-10-14-12	24						Orange brown coarse to fine SAND, little coarse to fine Gravel, little Silt. (SM)			
	S4		14-14-14-9	28						Same, some coarse to fine Gravel.			
	S5		5-6-6-5	12						Orange brown coarse to fine SAND, little Silt, trace fine Gravel. (SM)			Soil mottling @ 10.0'
									А		- 90 -		ALLUVIAL SAND
	S6		2-3-5-3	8						Same.		T	
											- 85 -		
	S7		3-3-3-4	6						Same.			
 ∠∪-								· · · · ·		Bottom of Boring at 20'	Γ -		
											- 80 -		

Boring # B-6 Page 1 of 1

Dril Dril Cas Dril CW Dat ^d Gro	ling ling ling ling Rep es: Cor und	Con Rig Met Size Equ orese Star nple Sur So	tractor: Operator: hod: 31/ /Type: / ipment: entative: ted: 7/9/2 face Eleva il Samples	Sanc N. 4" HS Mobi E. D 2019 2019	Drilli Paris A le B-{ eRicc (ft): Ro	ing, li sano 57 co : ±	100	/mbod	W	Image: State of the state	r-Plain -08-W 46 Cla rinceto ee Tes	w-01 rksvil on Jur st Bor	b High School South le Road Inction, NJ ing Location Plan DEPTH (FEET) 13 13
Depth (Sample No	Recovery (1	Pen. Resis (blows / 6 ir	N Value	Run No.	Rec (%)	RQD (%)	Graphic Sy	STRAT		Elevati	Water Con	REMARKS
			1					<u>× </u>		6 inches TOPSOIL.			
	S1		3-8-7	11						Brown coarse to fine SAND, little Silt, trace coarse to fine Gravel. (SM)	 		
 	S2		6-5-6-6	11						Orange brown coarse to fine SAND, some Silt. (SM)			
- 5 -	S3		6-6-7-8	13						Orange brown coarse to fine SAND, little coarse to fine Gravel, little Silt. (SM)	- 95 -		
 	S4		9-9-8-9	17					А	Same, some coarse to fine Gravel.			ALLUVIAL SAND
	S5		5-9-6-5	15						Orange brown coarse to fine SAND, little Silt, trace fine Gravel. (SM)			Soil mottling @ 10.0
													Son moturing @ 10.0
- 15-	S6		3-3-3-4	6						Same.			
-15- -20- 								<u>(* F. + P.</u>		Bottom of Boring at 15'	- 85 - - 80 - 		

Boring # B-7 Page 1 of 1

Dril Dril Dril Cas Dril	ling ling ling sing ling	Con Rig Met Size Equ	tractor: Operator: hod: ^{31/,} /Type: / ipment:	Sanc N. 4" HS Mobi	Drilli Paris A Ie B-t	ing, li sano 57	nc.			Project: West Windson Project Number: 18- Project Location: 34 Project Location: 34 Project Location: 34	r-Plain 08-W 16 Cla inceto e Tes	sbord W-01 rksvil m Jur t Bori	b High School South le Road notion, NJ ing Location Plan
cw	Rep	orese	entative:	E. D	eRico	00				GROUNDWATER OBSERVATIONS			DEPTH (FEET)
Date	es:	Star	ted: 7/9/2	2019						Σ Encountered: 7/9/2019			13
	Cor	nple	ted: //9/2	2019			100			Completion: 7/9/2019			13
Gro	una	Sur	Tace Eleva	τιοη	(π):	Ĭ	100		-	⊻ 24 Hour Reading:			
		So	il Samples		Ro	ck C	ore	lođ			_	(%)	
Depth (ft)	Sample No.	Recovery (ft)	Pen. Resist. (blows / 6 in.)	N Value	Run No.	Rec (%)	RQD (%)	Graphic Sym	STRATUN	MATERIAL DESCRIPTION	Elevation	Water Cont.	REMARKS
			2					<u>×14</u>		6 inches TOPSOIL.			
	S1		7-11-12	18						Orange brown medium to fine SAND, some Silt, little coarse to fine Gravel. (SM)			
	S2		19-14-11-9	25						Brown medium to fine SAND, some Silt, trace medium to fine Gravel. (SM)			
- 5 -	S3		6-6-6-6	12					•	Same.	- 95 -		
	S4		4-5-9-8	14					A	Orange to red brown coarse to fine SAND, little Silt, trace medium to fine Gravel. (SM)			ALLUVIAL SAND
	S5		5-5-5-6	10					· · · · · · · · · · · · · · · · · · ·	Same.			Soil mattling @ 10.0
												V	
	S6		2-3-4-6	7						Orange brown coarse to fine SAND, little Silt, trace coarse to fine Gravel. (SM)			
										Bottom of Boring at 15'			

Boring # B-101 Page 1 of 1

Drilling Contractor: Sano Drilling, Inc. Drilling Rig Operator: R. Moyer Drilling Method: 4 1/4" ID HSA Casing Size/Type: / Drilling Equipment: Diedrich D-50 CW Representative: E. DeRicco Dates: Started: 3/18/2020 Completed: 3/18/2020										Project: West Windsor-Plainsboro High School Sout Project Number: 18-08-WW-01 Project Location: 346 Clarksville Road Princeton Junction, NJ Boring Location: See Test Boring Location Plan GROUNDWATER OBSERVATIONS DEPTH (F ✓ Encountered: N/E				
		So	il Samples		Ro	ck C	ore	5				<u>.</u>		
Depth (ft)	Sample No.	Recovery (ft)	Pen. Resist. (blows / 6 in.)	N Value	Run No.	Rec (%)	RQD (%)	Graphic Symbo	STRATUM	MATERIAL DESCRIPTION	Elevation	Water Cont. (%	REMARKS	
			1					<u>x17</u>		6 inches TOPSOIL.				
	S1		2-2-4	4						Orange brown medium to fine SAND, some Silt, trace fine Gravel. (SM)				
	S2		4-5-5-6	10						Same.	-100-			
- 5 -	S3		3-3-3-2	6					А	Same.			ALLUVIAL SAND	
	S4		5-8-10-10	18						Brown medium to fine SAND and Clayey Silt, trace fine Gravel. (SM)				
	S5		3-3-3-4	6						Same.				
	S6		5-8-8-6	16						Orange brown medium to fine SAND, little Silt, trace fine Gravel. (SP)				
	S7		7-8-8-9	16					A	Same.	- 90 -		ALLUVIAL SAND	
-15-										Bottom of Boring at 14				
 											 - 85 - 			

Boring # B-102 Page 1 of 1

Drilling Contractor: Sano Drilling, Inc. Drilling Rig Operator: R. Moyer Drilling Method: 4 1/4" ID HSA Casing Size/Type: / Drilling Equipment: Diedrich D-50							nc.			Project: West Windsor-Plainsboro High School South Project Number: 18-08-WW-01 Project Location: 346 Clarksville Road Princeton Junction, NJ Princeton Junction, NJ				
CW Representative: E. DeRicco										GROUNDWATER OBSERVATIONS			DEPTH (FEET)	
Date	es:	Star	ted: 3/18/	2020)					⊥ Encountered:			N/E	
Gra	Lor	npie	face Elova	tion	, /ft\-	+	105			Completion:				
	unu	Jui		lion	(iii).	· <u>-</u>	100		<u> </u>	_ <u>¥</u> 24 Hour Reading:				
Depth (ft)	Sample No.	Recovery (ft)	Pen. Resist. (blows / 6 in.)	N Value	Run No.	Rec (%)	Green (%) RQD	Graphic Symbol	STRATUM	MATERIAL DESCRIPTION	Elevation	Water Cont. (%)	REMARKS	
			1					<u>×1 /×</u>		6 inches TOPSOIL.				
	S1		1-1-1	2						Orange brown medium to fine SAND, some Silt, trace fine Gravel. (SM)				
	S2		2-5-8-8	13						Same.				
- 5 -	S3		10-12-13-10	25					A	Brown medium to fine SAND, some Clayey Silt. (SM)	-100-		ALLUVIAL SAND	
	S4		10-10-9-8	19						Same.				
	S5		7-9-11-7	20						Orange brown medium to fine SAND, little medium to fine Gravel, little Clayey Silt. (SP)				
	S6		9-8-8-9	16					А	Same, trace fine Gravel.	- 90 -		ALLUVIAL SAND	
	S7		7-6-6-5	12						Same.				
			7							Bottom of Boring at 14'				
-15-											- 90 -			
F -														
F -														
-20-											- 85 -			

STORMWATER CONVEYANCE CALCULATIONS

Stormwater Collection System Calculations Project: High School South Computed By: HJS Job #: 1808WW.01 Checked By: HJS

Location: West Windsor Township, Mercer County, NJ Design Storm: 25 year

Date: 2/18/2020 Revised 4/20/20

NOTES:

1) Design method used is Rational Method 2) Refer to Weighted Runoff Coefficient table for calculation of incremental areas and C values

PIPE SE	SUBCATCHMENT AREA	INCREMENTAL		CUMULATIVE	JLATIVE TIME OF CONCENTRATION			Ι	PEAK F	RUNOFF	Η	PIPING II	IPUT	PIPING DATA				
FROM	ТО	Area (Acres)	"C"	A x C Ac	A x C (acres)	Te to Inlet (min)	Tc in Pipe (min.)	Final Tc (min)	(In/Hr)	Q to Inlet (CFS)	Q cum. for Pipe (CFS)	Dia. (In)	Length (Ft)	Man. "n"	Slope (ft/ft)	Pipe Capacity (cfs)	Full Pipe Velocity (fps)	Actual Pipe Velocity (fps)
12a	11	0.00	0.00	0.00	0.60	0.00	0.31	10.47	6.80	0.00	4.08	18	78.0	0.010	0.0030	7.48	4.23	4.41
9A	9	0.85	0.50	0.43	0.43	10.00	0.46	10.00	6.80	2.92	2.92	12	163.0	0.010	0.0100	4.63	5.90	6.44
9B	9	0.18	0.98	0.18	0.18	10.00	0.36	10.00	6.80	1.22	1.22	10	102.0	0.010	0.0080	2.55	4.68	4.60
9	8	0.16	0.98	0.16	0.77	10.00	0.19	10.46	6.80	1.09	5.24	24	105.0	0.010	0.0100	29.40	9.36	5.42
4	5	0.89	0.98	0.87	0.87	10.00	0.06	10.00	6.80	5.92	5.92	18	30.0	0.010	0.0100	13.65	7.73	7.24
5	6	0.11	0.98	0.11	0.98	10.00	0.11	10.06	6.80	0.75	6.66	18	50.0	0.010	0.0100	13.65	7.73	7.68
6	12A	0.06	0.98	0.06	1.04	10.00	0.16	10.17	6.80	0.41	7.07	18	108.0	0.010	0.0210	19.78	11.20	9.61
7	8	0.02	0.98	0.02	0.02	10.00	0.17	10.00	6.80	0.14	0.14	18	78.0	0.010	0.0100	13.65	7.73	0.69
8A	8	0.77	0.98	0.75	0.75	10.00	0.03	10.00	6.80	5.10	5.10	24	17.0	0.010	0.0130	33.52	10.68	5.53
10	10A	0.44	0.98	0.43	2.04	10.00	0.03	10.86	6.68	2.87	13.63	24	12.0	0.010	0.0060	22.77	7.25	7.80
10A	13a	0.39	0.98	0.38	2.42	10.00	0.10	10.89	6.68	2.54	16.17	24	75.0	0.010	0.0190	40.53	12.91	11.67
16a	16	0.19	0.98	0.19	0.19	10.00	0.22	10.00	6.80	1.29	1.29	12	75.0	0.010	0.0089	4.37	5.57	4.33
16	15	0.11	0.98	0.11	0.30	10.00	0.27	10.22	6.80	0.75	2.04	12	53.0	0.010	0.0030	2.54	3.24	3.69
15	14	0.38	0.98	0.37	0.67	10.00	1.42	10.49	6.80	2.52	4.56	18	360.0	0.010	0.0030	7.48	4.23	4.57
14	17	1.61	0.98	1.58	2.25	10.00	0.84	11.91	6.44	10.18	14.49	24	260.0	0.010	0.0030	16.10	5.13	5.78
11	18A	0.00	0.00	0.00	0.60	0.00	0.09	10.78	6.68	0.00	4.01	24	70.0	0.010	0.0190	40.53	12.91	5.19
12	12a	0.27	0.98	0.26	0.60	10.00	0.23	10.24	6.80	1.77	4.08	18	95.0	0.010	0.0080	12.21	6.91	5.67
12b	12	0.26	0.98	0.25	0.25	10.00	0.12	10.00	6.80	1.70	1.70	12	39.0	0.010	0.0080	4.14	5.27	4.83
13	12	0.09	0.98	0.09	0.09	10.00	0.24	10.00	6.80	0.61	0.61	12	94.0	0.010	0.0127	5.22	6.65	3.00
17	18	0.40	0.98	0.39	2.64	10.00	0.04	12.75	6.20	2.42	16.37	24	35.0	0.010	0.0220	43.61	13.89	12.24
1	1A	0.08	0.00	0.00	1.23	10.00	0.23	11.23	6.56	0.00	8.07	24	72.0	0.010	0.0030	16.10	5.13	5.14
20	1	0.00	0.50	0.00	1.23	10.00	0.29	10.94	6.68	0.00	8.22	24	90.0	0.010	0.0030	16.10	5.13	5.18
19	20	1.25	0.98	1.23	1.23	10.00	0.94	10.00	6.80	8.36	8.36	24	290.0	0.010	0.0030	16.10	5.13	5.22
3	21	0.00	0.00	0.00	1.31	10.00	0.54	11.56	6.44	0.00	8.44	24	107.0	0.022	0.0060	10.35	3.30	3.77
2	3	0.16	0.50	0.08	0.08	10.00	0.14	10.00	6.80	0.54	0.54	12	50.0	0.010	0.0100	4.63	5.90	2.66
1A	3	0.00	0.00	0.00	1.23	0.00	0.10	11.46	6.56	0.00	8.07	24	32.0	0.010	0.0030	16.10	5.13	5.14
8	10	0.09	0.80	0.07	1.61	10.00	0.21	10.65	6.68	0.47	10.75	24	85.0	0.010	0.0050	20.79	6.62	6.74

Subcatchment area for pipe sections downstream of basin is an assumed value to generate the dischage flow from the 25 year storm.

RIPRAP APRON DATA SHEET

•

.

.

RIPRAP APRON DATA SHEET

PROJECT NAME: Phase 1 of Improvements at HSS STORM FREQENCIES: 25 year

JOB #:	1808WW.01
DATE:	19-Feb-20
REV:	
BY:	HS

OUTLET	YEAR	Q	q	PIPE	PIPE	TAILWATER	La	Wa	d50	Thickness
STRUCT.	STORM	(cfs)	(cfs/ft)	HEIGHT (in)	WIDTH (in)	(ft)	(ft)	(ft)	(in)	(in)
Tw<1/2 Do or :	=0.2Tw									
19	25	19.90	9.95	24	24	0.40	26.7	32.7	12.7	25.5
19a	25	16.53	8.27	24	24	0.40	24.5	30.5	10.0	19.9
Tw>1/2 Do										
1 w>1/2 Do										

Calculations represent minimum requirements. See Plans for actual apron dimensions

Flows represent worst case 100 year flows.

A. Horizontal Riprap Apron (fig. 12-1, 12-2)

Apron Dimensions - unconfined outlet

1. The length and width of the apron shall be determined from the formulas:

TW <
$$\frac{1}{2} D_0$$
 $La = 1.8 \left(\frac{q}{Do^{0.5}} \right) + 7Do$ $Wa = 3Wo + La$

$$TW \ge \frac{1}{2} D_o \qquad La = 3 \left(\frac{q}{Do^{0.5}} \right) \qquad Wa = 3Wo + 0.4La$$

where
$$q = \frac{Q}{Wo}$$

Where D_o is the maximum inside culvert height in feet, W_o is the maximum inside culvert width in feet, q is the unit discharge, = Q/W_o in cfs per foot for the conduit design storm or the 25 year storm, whichever is greater and L_a is the length of the apron determined from the formula and W_o is the culvert width.

The width of the apron at the culvert outlet shall be at least 3 times the culvert width.

For Horizontal Apron:
$$d_{50} = \frac{0.02}{T_W} q^{1.33}$$
 where $q = \frac{Q}{W_Q}$

For areas where Tw cannot be computed, use $Tw = 0.2 D_o$

Where q and \mathbf{D}_o are as defined under apron dimensions and T_W is tailwater depth above the invert of culvert in feet.

Figure 12-1 Configuration of Conduit Outlet Protection

EMERGENCY SPILLWAY CALCS

Summary for Pond 7P: REVISED WITH NEW COUNTY ROW proposed basin SPW

Inflow Are	ea =	8.223 ac, 73.25% Impervious, Inflow Depth = 7.29" for 100YR STM event	
Inflow	=	58.22 cfs @ 12.17 hrs, Volume= 4.998 af	
Outflow	=	2.23 cfs @ 14.84 hrs, Volume= 1.070 af, Atten= 96%, Lag= 160.0 m	in
Primary	=	2.23 cfs @ 14.84 hrs, Volume= 1.070 af	

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 100.11' @ 14.84 hrs Surf.Area= 37,362 sf Storage= 175,084 cf

Plug-Flow detention time= 599.6 min calculated for 1.070 af (21% of inflow) Center-of-Mass det. time= 344.3 min (1,103.9 - 759.6)

Volume	In	/ert Avail.Sto	orage Storage	e Description	
#1	92	.70' 222,4	66 cf Custon	n Stage Data (Pris	smatic) Listed below (Recalc)
Elevatio	on	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
92.7	70	18,219	0	0	
93.0	00	18,336	5,483	5,483	
94.0	00	18,576	18,456	23,939	
95.0	00	18,775	18,676	42,615	
96.0	00	21,216	19,996	62,610	
97.0	00	24,095	22,656	85,266	
98.0	00	27,044	25,570	110,835	
99.0	00	30,100	28,572	139,407	
100.0	00	33,263	31,682	171,089	
101.0	00	69,492	51,378	222,466	
Device	Routing	lnvert	Outlet Devic	es	
#1	Primar	/ 93.96'	29.0'' W x 6.0	0" H Vert. Orifice/	Grate X 0.00 C= 0.600
			Limited to we	eir flow at low hea	ds
#2	Primary	/ 100.00'	21.0' long x	28.0' breadth Bro	ad-Crested Rectangular Weir
			Head (feet)	0.20 0.40 0.60 0	0.80 1.00 1.20 1.40 1.60
			Coef. (Englis	sh) 2.68 2.70 2.7	0 2.64 2.63 2.64 2.64 2.63
#3	Primary	y 97.70'	48.0'' x 48.0''	' Horiz. Orifice/Gr	ate X 0.00 C= 0.600
			Limited to we	eir flow at low hea	ds
	O.451	. Max=0.14 -f-	@ 14 04 hz= 11		
rimary	OUTLION	\mathbf{v} iviax=2.14 CTS	W 14.04 nrs H	vv-100.11 (Free	e Discharge)

-1=Orifice/Grate (Controls 0.00 cfs)

-2=Broad-Crested Rectangular Weir (Weir Controls 2.14 cfs @ 0.90 fps)

-3=Orifice/Grate (Controls 0.00 cfs)

Pond 7P: REVISED WITH NEW COUNTY ROW proposed basin SPW

Summary for Pond 7P: REVISED WITH NEW COUNTY ROW proposed basin SPW

Inflow Area	a =	8.223 ac, 73.25% Impervious, Inflow Depth = 7.29" for 100YR STM ev	/ent
Inflow	=	8.22 cfs @ 12.17 hrs, Volume= 4.998 af	
Outflow	=	24.64 cfs @ 12.37 hrs, Volume= 2.637 af, Atten= 58%, Lag= 12.2	min
Primary	=	24.64 cfs @ 12.37 hrs, Volume= 2.637 af	

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Peak Elev= 98.30' @ 12.37 hrs Surf.Area= 27,975 sf Storage= 119,216 cf

Plug-Flow detention time= 272.4 min calculated for 2.637 af (53% of inflow) Center-of-Mass det. time= 144.8 min (904.4 - 759.6)

Volume	Invert	Avail.Sto	rage Storage	Description			
#1	92.70'	222,46	66 cf Custom	Stage Data (Pris	smatic) Listed I	below (Recalc)	
Elevation	Su	urf.Area	Inc.Store	Cum.Store			
(feet)		(sq-ft)	(cubic-feet)	(cubic-feet)			
92.70)	18,219	0	0			
93.00)	18,336	5,483	5,483			
94.00	1	18,576	18,456	23,939			
95.00	1	18,775	18,676	42,615			
96.00		21,216	19,996	62,610			
97.00	1	24,095	22,656	85,266			
98.00)	27,044	25,570	110,835			
99.00)	30,100	28,572	139,407			
100.00)	33,263	31,682	171,089			
101.00	1	69,492	51,378	222,466			
Device I	Routing	Invert	Outlet Device:	S			
#1 I	Primary	93.96'	29.0'' W x 6.0'	' H Vert. Orifice/	Grate X 0.00	C= 0.600	
	-		Limited to wei	r flow at low hea	ıds		
#2 I	Primary	100.00'	21.0' long x 2	8.0' breadth Bro	oad-Crested Re	ectangular Weir	
			Head (feet) 0	.20 0.40 0.60 0	0.80 1.00 1.20) 1.40 1.60	
			Coef. (English) 2.68 2.70 2.7	70 2.64 2.63 2	2.64 2.64 2.63	
#3 I	Primary	97.70'	48.0'' x 48.0'' l	Horiz. Top of Bo	x C= 0.600		
			Limited to wei	r flow at low hea	ids		
					_ 、		

Primary OutFlow Max=24.24 cfs @ 12.37 hrs HW=98.30' (Free Discharge)

-1=Orifice/Grate (Controls 0.00 cfs)

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

—3=Top of Box (Weir Controls 24.24 cfs @ 2.53 fps)

Pond 7P: REVISED WITH NEW COUNTY ROW proposed basin SPW

BASIN SUMMARY FORM

Hydrologic Modeling Database - Data Entry Form

Project Site Details

Chpt. 251 Application Number: Start Date (if known): TBD Street Address:346 Clarksville Road County: Mercer Municipality: West Windsor Township Block: 17.13 Lot: 2 NJDEP Anderson Landuse Code (4 digits): 1110 Landuse description: High School

Northing: 536,435.13 Easting: 458,894.35

Project Contact Details

Applicant: West Windsor Plainsboro Regional School District

Address: 321 Village Road East

Phone: 609-716-5000

Email: christopher.russo@ww-p.org

Post Construction Operation & Maintenance:²

Party Name: Thomas Daly Address: 321 Village Road East Phone: 609-716-5000 Email: thomas.daly@ww-p.org Party type (HOA, government, private, etc): Municipal

Hydrologic Modeling Database - Data Entry Form

Basin Details:³

Basin Centroid (NJ State Plane Feet):⁴

Northing: 536,904.22 Easting: 458,970.22

Basin Type: detention + infiltration

Construction: excavated

Status phase:⁵ Design ⊠ As-built □

Dam Height (ft) 8 top width (ft) 10

Dam Classification: iii

Drainage Area(s) to Basin [note- include any bypass areas]⁶

Drainage Area Name	Drainage Area (acres)	Post- Development CN#	Percent Impervious	Time of Concentration (min)
impervious	6.02	98	100	10
open space	2.20	69	0	10

Basin Outlet Structure(s)⁷

ID: Outlet Control Structure

End of Pipe Location:⁸ Northing: 536,881.64 Easting: 458,958.55

Discharge Type ⁹ (weir, orifice, etc)	Dimensions (diameter, length)	Elevation (USGS)	Discharge ¹⁰ Coefficient	Equation Used ¹¹
orifice	2.33'x0.50'	93.96	0.6	Q=CoAv(2gh/k)Nb

Hydrologic Modeling Database - Data Entry Form

Basin Outlet Structure(s)

ID:

End of Pipe Location: Northing: Easting:

Discharge Type (weir, orifice, etc)	Dimensions (diameter, length)	Elevation (USGS)	Discharge Coefficient	Equation Used

Basin Stage-Discharge Rating Table¹²

Elevation (USGS Feet)	Storage (Acre-Ft)	Total Outlet Structure Discharge (cfs)
92.70	0	0.00
94.10	0.592	0.41
94.30	0.678	1.54
94.70	0.850	4.03
95.10	1.022	5.47
95.90	1.389	7.56
96.50	1.689	8.80
97.30	2.126	10.22
97.70	2.361	10.87

NJDA-HMD Form 2014

Hydrologic Modeling Database - Data Entry Form

NJDEP BMP Water Quality Structures¹³

Туре	Size	Size Units	Northing (SPF)	Easting (SPF)
(rain garden, green roof, seepage		(cu ft, sq ft		
pit etc)		etc)		
sand filter	15,125	sq ft	536,904	458,970
		-		
choose an item				
choose an item				
choose an item				
choose an item				

Explanatory Notes-

- ¹ Approximate location of center of site, coordinates in state plane feet
- ² Indicate who will be responsible for permanent operation and maintenance
- ³ Additional Basin Detail Pages can be used for more than one basin in a project.
- ⁴ Approximate location of center of basin, coordinates in state plane feet

⁵ Indicate "design" for basins not yet constructed

⁶ Drainage areas which are modified by construction, but not directed to the basin should still be listed and described

⁷ "Outlet structure" means the control box, outlet headwall, FES etc. This does not refer to an individual control on the structure such as a weir or orifice. There are two tables for more than one outlet structure

⁸ Approximate location of terminal discharge end of basin outfall, coordinates instate plane feet

⁹ Indicate the type of outlet – weir, orifice, hydro brake, etc.

¹⁰ Discharge Coefficient specific to the type of outlet control i.e., 0.6 for circular orifice

¹¹ List the discharge equation for each outlet (weir, orifice etc) used

¹² For basins with dead storage below the primary outlet, indicate 0 cfs discharge until the lowest outlet is reached. Routing table should begin at the lowest basin elevation.

¹³ Describe NJDEP BMP Manual water quality devices such as seepage pits, rain gardens etc. Size is appropriate for device – cubic feet, square feet or linear feet. Location of device using state plane feet coordinates.

GROUNDWATER RECHARGE

Ann	Ann	iual Groundwater Rech	1arge Ar Average	<mark>alysis</mark>	(based on G	SR-32)			Project Name:	WW-P High	School S	outh
t Select Township	Select Township		Annual P (in)	Climatic Factor					Description:	Detension E	Basin	
MERCER CO., WEST WINDSC	MERCER CO., WEST WINDSC	JR TWP	44.9	1.43		ļ			Analysis Date:	02/10/20		
Pre-Dev	Pre-Dev	eloped Conditi	ons						Post-Developed	d Conditions		
Area TR-65 Land Cov icres)	TR-65 Land Cov	er	Soil	Annual Recharge (in)	Annual Recharge (cu.ft)		Land Segment	Area (acres)	TR-55 Land Cover	Soil	Annual Recharge (in)	Annua <mark>l</mark> Recharge (cu.ft)
2 Open space	Open space		Sassafras	13.2	95,936		1	1.155	Open space	Sassafras	13.2	55,403
0_895 Open space	Open space		Sassafras	13.2	42,931		2	0.175	Open space	Sassafras	13 <u>.</u> 2	8,394
4.452 Impervious an	Impervious an	eas	Sassafras	0'0			3	6.063	mpervious areas	Sassafras	0.0	
0_724 Open space	Open space		Sassafras	13.2	34,729		4	1.045	Open space	Sassafras	13.2	50,126
0.367 Impervious an	Impervious an	eas	Sassafras	0'0			5		Impervious areas	Sassafras		
							9					
							7			Fallsington		
0							8	0				
0							6	0				
0							10	0				
0							11	0		Sassafras		
0							12	0				
0							13	0		Sassafras		
0							14	0				
0							15	0				
				Total Annual	Total Annual						Total Annual	Total Annual
8.4				Recharge (in)	Recharge (cu-ft)		Total =	8.4			Recharge (in)	Recharge (cu.ft)
				5.7	173,596		Annual	Recharg	e Requirements Calculat	ion ↓	3.7	113,924
fill the Pre-Development and Post-	Pre-Development and Post-	Development Condit	ions Tables			% of Pre-D	eveloped A	Annual Re	charge to Preserve =	100%	Total Impervious Area (sq.ft)	264,104
ment, first enter the area, then select TR-551	st enter the area, then select TR-551	_and Cover, then select So	il. Start from the to	op of the tab le		Post-De	velopme	ent Ann	ual Recharge Deficit=	59,672	(cubic feet)	
ward. Don't leave blank rows (with A=0) in bet	un't leave blank rows (with A=0) in bel	ween your segment entrie	ss. Rows with A=0 v	will not be		Rechar	ge Efficie	ency Pai	ameters Ca <mark>l</mark> culations (ar	ea averages)		
in calculations. For impervious areas outside	ations. For impervious areas outside	of standard lots select "Im	ipervious Areas" as	s the Land Cover		RWC= 3	3.61	(in)	DRWC=	3.61	(in)	
vious areas are only required if an infiltration	sas are on l y required if an infiltration	facility will be built within th	hese areas.			ERWC = 1	1.03	(in)	EDRWC=	1.03	(in)	

										Recharge				sh volume= deficit volume. The porti <mark>or</mark>	ed in these calculations. Results are	to empty in less than 3 days. For <mark>land</mark>	minimal but not zero as determined by	eration of lateral flow and other los <mark>s</mark> e.	Recharge" sheet to "Vdef" and then solve for ABMP or
			Unit	. <u>e</u>	Li	. <u>⊑</u>	, E			y Annual				o make rec	P are ignor	h for BMP	VC will be r	ving conside	: "Annual n facility a
			<u>Value</u>	0.11	0.17	6.7	7.6		SAGES	em to satisf				s are updated to	ccupied by BMI	is small enoug	ious areas" RV	and Cover allow	np" from the MP. our infiltration
		ameters	Svmbo	Qdesign	Pdesign				ECK MES	Solve Proble OK	i X	X		BMP dimension:	t and the area o	dBMP selected	u select "impen	: zone for this La	ous area "Air able to the B nnected to yo
D Type		Recharge Design Par-	<u>Parameter</u>	Inches of Runoff to capture	Inches of Rainfa to capture	Recharge Provided Avg. over Imp. Area	Runoff Captured Avg. over imp. Area		CALCULATION CH	Volume Balance-> <	dEXC Check>	BMP Location> (OTHER NOTES	Pdesign is accurate on y after I	of BMP infikration prior to filling	sensetive to dBMP, make sure	Segment Location of BMP if yc	the soil type and a sha ll ow rool	nd total proposed impervi e impervious area is avai pervious area directly coi
BMP or L		heters	<u>Unit</u>	. <u>S</u>	.5	.5				unitless cu ft	11-00	cu.ft	Represents % Infiltration Recharged	%	%	%	%		olume "Vdef" ar unoff from entire and Aimp to im
Date		ated Param	<u>Value</u>	0.81	0.81	0.63				0.02 2.250	arameters	147,040	88.7%	%1-17	21.7%	19_1%	14.9%		it recharge v suming the ru target value
Analvsis	02/10/20	acity Calcul	Svmbo	ERWC	EDRWC	RERWC			Parameters	Aratio VRMP	Calculated F								s of total defic quirement as t Vdef to your
		Root Zone Water cap:	Parameter	Empty Portion of RWC under Post-D Natural Recharge	ERWC Modified to consider dEXC	Empty Portion of RWC under Infilt. BMP			BMP Calculated Size	ABMP/Aimp BMP Volume	System Performance	Annual BMP Recharge Volume	Avg BMP Recharge Efficiency	%Rainfall became Runoff	%Runoff Infiltrated	%Runoff Recharged	%Rainfall Recharged		dsheet assigns the value: role the entire recharge re recharge requirement, se & Aimp" button.
U	Basin		Unit	sq.ft	in	'n	in	unitiess				cu " ft	sq_ft	in	in	no units	in	in	ault the sprea le BMP to har Ily part of the Default Vdef ,
Descriptic	Detensior		<u>Value</u>	4500.0	6.0	-16.8	0'0	m			Worksheet	59,672	262,393	2.83	2.83	1.43	44.9	2.7	lumes: By dei ition for a sing to recharge o ation clik the '
	South I	rameters	Svmbo	ABMP	dBMP	dBMPu	dEXC	SegBMP			Recharge	Vdef	Aimp	RWC	DRWC	C-factor	Pavg	dr	echarge vo s allows solu r a LID-IMP ault configur
Project Name	WW-P High School	Recharge BMP Input Pa	Parameter	BMP Area	BMP Effective Depth, this is the design variable	Upper level of the BMP surface (negative if above ground)	Depth of lower surface of BMP, must be>=dBMPu	Post-development Land Segment Location of BMP , Input Zero if Location is distributed or undetermined			Parameters from Annual	Post-D Deficit Recharge (or desired recharge volume)	Post=D Impervious Area (or target Impervious Area)	Root Zone Water Capacity	RWC Modified to consider dEXC	Cimatic Factor	Average Annual P	Recharge Requirement over Imp, Area	How to solve for different r and "Aimp" on this page. Thi To solve for a smaller BMP o dBMP. To go back to the def

GROUNDWATER MOUNDING

. .

.

This spreadsheet will calculate the height of a groundwater mound beneath a stormwater infiltration basin. More information can be found in the U.S. Geological Survey Scientific Investigations Report 2010-5102 "Simulation of groundwater mounding beneath hypothetical stormwater infiltration basins".

wants the values perpendicular to the short side, specify y as the short dimension, x as the long dimension. All distances are from the center of the basin. Users can change the rectangular basin, if the user wants the water-table changes perpendicular to the long side, specify x as the short dimension and y as the long dimension. Conversely, if the user thickness of the saturated zone (hi(0), height of the water table if the bottom of the aguifer is the datum). For a square basin the half width equals the half length (x = y). For a The user must specify infiltration rate (R), specific yield (Sy), horizontal hydraulic conductivity (Kh), basin dimensions (x, y), duration of infiltration period (t), and the initial distances from the center of the basin at which water-table aquifer thickness are calculated.

Cells highlighted in yellow are values that can be changed by the user. Cells highlighted in red are output values based on user-specified inputs. The user MUST click the blue "Re-Calculate Now" button each time ANY of the user-specified inputs are changed otherwise necessary iterations to converge on the correct solution will not be done and values shown will be incorrect. Use consistent units for all i nput values (for example, feet and days)

(U SGS SIR 2010-5102), vertical soil permeability In the report accompanying this spreadsheet (ft/d) is assumed to be one-tenth horizontal 1.50 hydraulic conduct vity (ft/d). maximum thickness of saturated zone (beneath center of basin at end of infiltration period) maximum groundwater mounding (beneath center of basin at end of infiltration period) 1.33 4.00 feet/day days Conversion Table 36 0.67 2.00 inch/hour hours Specific yield, Sy (dimensionless, between 0 and 1) use consistent units (e.g. feet & days or inches & hours) Horizontal hydraulic conductivity, Kh (feet/day)* initial thickness of saturated zone (feet) 1/2 length of basin (x direction, in feet) 1/2 width of basin (y direction, in feet) Recharge (infiltration) rate (feet/day) duration of infiltration period (days) Δh(max) h(max) hi(0) × Sy Sy × 0.150 154.000 51.000 2.500 0.8340 4.17 667 nput Values

center of basin

Distance from

Groundwater

Disclaimer

unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in is made available to the general public as a convenience for those wishing to replicate values documented in the This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions. This spreadsheet will calculate the height of a groundwater mound beneath a stormwater infiltration basin. More information can be found in the U.S. Geological Survey Scientific Investigations Report 2010-5102 "Simulation of groundwater mounding beneath hypothetical stormwater infiltration basins".

wants the values perpendicular to the short side, specify y as the short dimension, x as the long dimension. All distances are from the center of the basin. Users can change the rectangular basin, if the user wants the water-table changes perpendicular to the long side, specify x as the short dimension and y as the long dimension. Conversely, if the user thickness of the saturated zone (hi[0], height of the water table if the bottom of the aquifer is the datum). For a square basin the half width equals the half length (x = y). For a The user must specify infiltration rate (R), specific yield (Sy), horizontal hydraulic conductivity (Kh), basin dimensions (x, y), duration of infiltration period (t), and the initial distances from the center of the basin at which water-table aquifer thickness are calculated.

Cells highlighted in yellow are values that can be changed by the user. Cells highlighted in red are output values based on user-specified inputs. The user MUST click the blue Re-Calculate Now" button each time ANY of the user-specified inputs are changed otherwise necessary iterations to converge on the correct solution will not be done and values shown will be incorrect. Use consistent units for all input values (for example, feet and days)

able	feet/day	1 33		4.00	In the report accompanying this spreadsheet	(USGS SIR 2010-5102), vertical soil permeability	1 50 hwdraudic conductivity (AVA)	The advictor and the advictor and the advictor a	nfiltration period)	tration period)
rsion 1	nour	0.67	5	2.00			36		i do br	f infilt
Conve	inch/h					hours			n at ei	end o
use consistent units (e.g. feet & days or inches & hours)		Recharge (infiltration) rate (feet/day)	Specific yield, Sy (dimensionless, between 0 and 1)	Horizontal hydraulic conductivity, Kh (feet/day)*	1/2 length of basin (x direction, in feet)	1/2 width of basin (y direction, in feet)	duration of infiltration period (days)	initial thickness of saturated zone (feet)	maximum thickness of saturated zone (beneath center of	maximum groundwater mounding (beneath center of bas
		R	Sy	х	×	٢	t	hi(0)	h(max)	Δh(max)
	input values	0.8340	0.150	4.17	51.000	154.000	1.667	2.500	11.657	9.157

Distance from center of basin

Groundwater

Disclaimer

unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in is made available to the general public as a convenience for those wishing to replicate values documented in the This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.

STORMWATER MANAGEMENT OPERATION AND MAINTENANCE MANUAL

TABLE OF CONTENTS

<u>Page</u>

L	INTRO	DUCTION	2
П.	DESC	RIPTION OF FACILITY	2
III.	RESP	ONSIBILITY FOR OPERATION	2
IV.	ABOV	E GROUND DETENTION BASIN	3
	A.	INSPECTION AND MAINTENANCE	
	В.	MAINTENANCE EQUIPMENT & MATERIALS	
	C.	GENERAL MAINTENANCE SUMMARY	
V.	INFILT	RATION BASIN - MAINTENANCE SUMMARY AND TASKS	5
VI.	ESTIM	ATED MAINTENANCE COSTS AND TASKS	. 6

÷

I. INTRODUCTION

The purpose of this report is to provide guidelines and information regarding the required maintenance for the infiltration basin to be constructed in association with the development of Block 17.13, Lot 2 in the Township of West Windsor, Mercer County, New Jersey. The project will consist of two additions to the existing high school, parking lot expansion and new student drop off at West Windsor-Plainsboro High School South. The parking lot expansion will provide 9 additional parking spaces, new lighting, a surface infiltration basin and all associated site improvements. The subject site is located on at 346 Clarksville Road in the Township of West Windsor, Mercer County, New Jersey and is identified as Block 17.13, Lot 2 on the Township of West Windsor Tax Map. The subject site is currently being used as a high school. The stormwater management facilities will contribute toward the safe conveyance, storage, treatment and discharge of runoff generated by the proposed development. Every stormwater management system, whether at grade or below grade, requires that basic periodic maintenance to be performed in order to maintain the proper functioning and operation of the system. This report will outline these procedures, further discuss responsibilities and highlight those responsible for performing said maintenance.

II. DESCRIPTION OF FACILITY

The proposed overall stormwater management system has been designed with a pipe network conveying runoff to a sand infiltration basin. These facilities will require periodic inspections and maintenance. The following information can be considered a guideline for their continued maintenance, including suggested inspection scheduling, as well as performance objectives.

III. RESPONSIBILITY FOR OPERATIONS

Responsibility for operation, maintenance, repair and safety of stormwater management facilities, including periodic removal and disposal of accumulated particulate material and debris, shall remain with the property owner and all successors in title unless assumed by a governmental agency. For purposes of this manual, the stormwater management facility shall consist of all components including the storm sewer pipe network, infiltration basins and associated site features that convey stormwater runoff. The responsible party shall evaluate the effectiveness of the maintenance plan at least once per year and adjust the plan and deed as necessary.

In the event that the stormwater management facility becomes a danger to public safety or public health, or if it is in need of maintenance, the school district shall so notify the responsible person in writing. Upon receipt of that notice the responsible person shall have fourteen (14) days to effect maintenance and repair of the facility in a manner that is approved by the municipal engineer or a designee. If for reasons of safety there is need for immediate action, the responsible personal shall act forthwith to remove the danger. If the responsible person fails or refuses to perform such maintenance and repair, the municipality may immediately proceed to do so and shall be reimbursed for the cost thereof by the responsible person or entity.

Responsible Parties

System Owner:	West Windsor Plainsboro Regional School District
	Director of Buildings and Grounds
	505 Village Road West
	West Windsor, NJ 08550
	(609) 716-5000 x 5351
Design Engineer:	Van Cleef Engineering Associates
	4 AAA Drive, Suite 103
	Hamilton, NJ 08691
	Attn: Herbert Seeburger, PE
	(609) 689-1100

IV. ABOVE GROUND DETENTION BASINS

A. Inspections

A consulting professional engineer should inspect the stormwater facility annually to ensure that the infiltration basin, and storm sewer pipe network is operating as designed. The inspection shall reveal whether or not there are accumulated sediments within the basins, structures or the associated pipe network. An inspection report should be provided to the owner with recommendations on whether or not sediment removal is required. Debris and other general nuisance materials should also be removed from all areas at this time.

Property Owners/Tenants or their maintenance designee should also inspect the above ground detention facility components once per month and after storm events exceeding one (1) inch of rainfall to remove accumulated floating debris and ensure proper functioning of the outlet control structure. If removal of accumulated debris is necessary, it shall be accomplished at this time.

B. Maintenance and Repair

Maintenance procedures are required to maintain the intended operation and safe condition of the stormwater management facility by reducing the occurrence of problems and malfunctions. To be effective, maintenance shall be performed on a regular basis and include such routine procedures as training of staff, periodic inspections, silt and debris removal and disposal, control of mosquitoes and other insects, and review of maintenance and inspection work to identify where the maintenance program could be more effective.

Repair procedures are required to correct a problem or malfunction at a stormwater management facility and to restore the facility's intended operation and safe condition. Based upon the severity of the problem, repairs shall be performed on an as-needed or emergency basis and includes such procedures as structural repairs, mosquito control, removal of debris, sediment and trash which threaten discharge capacity, erosion repair and snow and ice removal.

In general, there are two types of maintenance considerations: aesthetic maintenance and functional maintenance. They are described as follows:

Aesthetic Maintenance

Aesthetic Maintenance is obviously more important for high profile, above ground facilities than for underground facilities. In general, policing of the grounds and parking lots will prevent foreign debris and floating materials from entering into the system and shall be conducted on an as needed basis.

Collection and removal of surface debris should be performed in association with the lawn and grounds maintenance schedule and that should be accomplished twice monthly (or as necessary) to project a clean, healthy, community image.

Leaf debris and snow removal are also concerns for facilities in the Northeast and protection from accumulated leaf matter and expeditious snow removal are encouraged.

If visual inspection reveals the accumulation of unwanted sediments within the manhole/inlet structure or the adjoining pipe network, it shall be removed with either conventional methods (broom, shovel and pail), or by mechanical means (high power vacuum). The degree of accumulation shall dictate which methods to realistically employ.

The facility shall be inspected for accumulated sediments and those sediments shall be removed (regardless of their depth) on an annual basis.

Functional Maintenance

Functional maintenance is necessary to keep the stormwater management system operating properly at all times. Functional maintenance has two components; preventative maintenance and corrective maintenance.

Preventative maintenance refers to procedures that are performed on a regularly scheduled basis to keep the BMP in proper working order. Preventive maintenance tasks include: surface debris removal (twice monthly) and removal of accumulated sediments within manhole or inlet structures (once annually or as necessary).

Corrective Maintenance is that which is required on an emergency or non-routine basis to correct problems and to restore the intended operation and safe functioning of the stormwater management system. Prompt response to maintenance problems is essential to providing minimal disruption of the functioning SWM system.

C. General Maintenance Summary

- Inspections to be performed by a consulting engineer on an annual basis.
- Inspections to be performed by the property owner and/or a maintenance designee on a monthly basis and/or after a considerable storm event.
- Detention basin manhole access and debris removal to be performed on an annual basis and/or as inspection routine dictates.
- Surface debris, including garbage, leaf matter and snow removal are encouraged as necessary to maintain a safe condition.
- Annual inspection reports shall be provided to the Township Engineer by April 1st of each year.

V. INFILTRATION BASIN – MAINTENANCE SUMMARY AND TASKS

Infiltration basins are designed to provide primarily Water Quality Control. This management measure involves employing an infiltration basin to achieve 80% Total Suspended Solid (TSS) removal from stormwater that is discharged from the property. It is imperative that the sand bedding is maintained per manufactures recommendations to ensure it will function properly.

Infiltration basins operate similar to an Extended Detention Basin in that they receive runoff from the upstream conveyance systems (pipes and/or swales) and impound that water in a designated storage area "basin" while discharging only a percentage of the runoff received to mimic the required reduction below the pre-development runoff conditions. Similar to the stormwater collection system, each basin is designed based on the amount of runoff produced within its drainage area, and the available water storage capacity at that basin.

Unique to the Infiltration Basin is it primarily only controls the more frequent water quality design storm – the first 1.25 inches of runoff falling in a two-hour period, or less. The impounded water is treated for water quality by infiltration through the soil/sand layers and subgrade where microbes provide treatment.

Significant increases in impervious coverage (roofs, pavement, sidewalks, etc.) within any drainage area are not to be undertaken without a proper Engineering analysis to insure there is adequate capacity within the basin to prevent downstream flooding conditions, and any permit conditions imposed upon the original project are not violated. These basins operate without significant owner management as long as each outlet structure's devices are kept free and clear of obstructions that would limit the flow they produce. No equipment or material storage, construction, or re-grading is permitted within a designated infiltration basin.

Maintenance measures for the infiltration basin shall include, but not be limited to:

A. Inspection for blocking, clogging or accumulation of sediments in the basin's interior.

B. Mowing and/or trimming of vegetation must be performed on a regular schedule based on specific site conditions.

C. The sand bottom and the spillway must be inspected at least annually for erosion and scour.

D. The bottom sand layer should be inspected at least monthly as well as after every storm exceeding one inch of rainfall. If the water fails to infiltrate 72 hours after the end of the storm, corrective measures must be taken. Annual tilling by light equipment can assist in maintaining infiltration capacity and break up clogged surfaces.

Task Identification	Task Frequency	Task Estimated Cost
Inspection by licensed professional consulting engineer	Once (1) per year	\$1000.00
Inspection by property owner and/or maintenance designee	Once (1) per month (or after a storm event exceeding 1 inch of rainfall)	\$500.00
Debris removal from stormwater conveyance system (inlets, pipes, manholes, flared end sections, basin and outlet control structure)	Once (1) per year	\$2,000.00
Surface debris removal (garbage & organic matter) including leaves in the Fall and snow in the Winter	Twice (2) per month (or on needed basis)	\$1,000.00
Grass Mowing	Twice (2) per month (or on needed basis)	\$500.00

VI. ESTIMATED MAINTANCE COSTS AND TASKS

<u>West Windsor Plainsboro Regional School District</u> <u>WW-P High School South</u> <u>346 Clarksville Road, West Windsor, NJ 08550</u> <u>Block 17.13 Lot 2</u>

STORMWATER MANAGEMENT MAINTENANCE RECORD

(Attach additional forms, photos, receipts and reports as maybe required.)

Record for period

Check If Completed	Description of Maintenance Item	Date Complete	Completed By Initial/Signature
	Visual Inspection of Drainage Structures and where possible subsurface piping.		
	Visual Inspection of all Outfalls.		
	Removal of Silt, Litter and Debris from areas outlined above.		
	Repair or Replacement of Failing Components (if required)		
	Tilling of Infiltration Basin sand bottom		

Notes for additional / follow-up work required:

DRAINAGE AREA MAPS

DRAINAGE AREA MAPS

