Little Bear Brook Flood Hazard Assessment and Redevelopment Area Regional Stormwater Management Analysis

Progress Meeting

June 30, 2014

Princeton Hydro, LLC and SWM Consulting, LLC

Project Team

- West Windsor Township
 - M. Patricia Ward, Community Development Director
 - Francis Guzik, PE Township Engineer
 - Township Departments
- Princeton Hydro, LLC
 - Geoffrey M. Goll, PE Principal
 - Mary Paist-Goldman, PE Project Manager

Storm Water Management Consulting, LLC
 Joseph J. Skupien, PE, PP – Principal

Project Goals & Scope of Work

- Goal 1: Little Bear Brook Flood Hazard Assessment
 - Public Meetings and Outreach
 - Compile and Review Existing Data
 - Flood Hazard Assessment
 - Analysis of Flood Mitigation Strategies
 - Action Plan
 - Final Report and Presentation

Project Goals & Scope of Work

- Goal 2: Redevelopment Area Regional Stormwater Management Plan
 - Public Meetings
 - Aerial Topographic Mapping
 - Maps and Overlays
 - Regional Stormwater Analysis
 - Conceptual Basin Locations and Designs
 - Potential Little Bear Brook Flood Relief
 - Final Report and Presentation

Little Bear Brook Flood Hazard Assessment Update

LBB - Completed Project Steps

- Attended Township Council Meeting
- Compiled and Reviewed Existing Data
- Prepared Topographic Maps
- Prepared and Distributed 82 Little Bear Brook Flood Questionnaire
- Analyzed 58 Questionnaire Responses
- Performed and Analyzed 40 Little Bear Brook Structure Elevation Surveys

LBB - Completed Project Steps

 Performed Flood Hazard Assessment
 Began Analysis of Flood Mitigation Strategies

Some Flood Fundamentals

Albert Einstein

"For every complex problem, there exists an answer that is simple, concise, and totally wrong."

"The most incomprehensible thing about the universe is that it is comprehensible.

Watershed or Drainage Area

Watershed or Drainage Area

USGS Peak Discharge Equations

Q2	=	25.6Å ^{0.89} S ^{0.25} St ^{-0.56} I ^{0.25}
Q5		39.7A ^{0.88} S ^{0.26} St ^{-0.54} I ^{0.22}
Q10	=	54.0A ^{0.88} S ^{0.27} St ^{-0.53} I ^{0.20}
Q25		78.2A ^{0.86} S ^{0.27} St ^{-0.52} I ^{0.18}
Q50	=	104A ^{0.85} S ^{0.26} St ^{-0.51} I ^{0.16}
Q100	=	136 A ^{0.84} S ^{0.26} St ^{-0.51} I ^{0.14}

Flood Frequency and Probability

Flood 'Frequency' Typically Expressed in Years

Annual Flood Probability (%) = 100 Flood Frequency (Years)

100-Year Flood Annual Probability = 100 / 100 = 1%
25-Year Flood Annual Probability = 100 / 25 = 4%
10-Year Flood Annual Probability = 100 / 10 = 10%

Cross Section View (Looking Upstream or Downstream)

Profile View (Looking Sideways)

Millstone River FIS Profiles

Confluence

Route One

Fisher Place

Little Bear Brook FIS Profiles Without Millstone River

Little Bear Brook FIS Profiles

Questionnaire Results

- 58 Responses from 82 Questionnaires
- Worst Flooding in 2011 from Tropical Storm Irene
- Second Worst in 1999 from Tropical Storm Floyd
- Flooding Above First Floor Reported at Six Structures
- Road and Yard Flooding Reported Most Frequently

Flood Hazard Assessment

Assessment Results Based Upon: Questionnaire Results Interviews with Township Personnel FEMA Flood Insurance Study • NJDEP Floodplain Delineation Computer Model Data and Simulations May 1, 2014 Storm and Flood Event

Flood Hazard Assessment

 Estimated Road Flood Thresholds:
 Fisher Place – 4-Year Flood
 Washington Road – 4-Year Flood
 Alexander Park – 2-Year Flood
 Alexander Road – 5-Year Flood
 Similar Yard and Parking Lot Flood Thresholds

Flood Hazard Assessment

<u>Estimated Structure Flood Thresholds</u>:
 Fisher Place – 10-Year Flood
 Washington Road – 5-Year Flood
 Alexander Park – >100-Year Flood
 Alexander Road – 15-Year Flood
 <u>Comments or Information</u>?

May 1, 2014 Flood Event

- Total Rainfall Approximately 5.3 Inches in 36 Hours
- Approximately 4 Inches in 24 Hours
- Approximately 3 Inches in 12 Hours
- Approximately 5 to 10-Year (20% to 10% Chance) Storm Event

May 1, 2014 Flood Event

- Field Surveyed High Water Elevations:
- Fisher Place = 58.5 NAVD88
- Washington Road = 58.7 NAVD88
- Fieldston Road = 58.5 NAVD88
- Alexander Road = 58.8 NAVD88
- Approximately 10-Year Flood Event

Little Bear Brook HWMs and Computed WS Profile – May 1, 2014

Little Bear Brook FIS Profiles

Flood Mitigation Strategies

- What is the Primary Source of the Flooding?
 - Little Bear Brook?
 - Millstone River?
 - Inadequate Bridges and Culverts?
 - Downstream Structures?

Watershed or Drainage Area

USGS Watershed Data

Characteristic	Little Bear Brook	Millstone River
Drainage Area (SM)	2.9	78
Flow Length (Miles)	2.8	23
% Forest Cover	8	12
% Urban Land Cover	62	36
% Wetlands	18	25
Peak 10-Year Flow	472	2910
Peak 100- Year Flow	821	5090

Millstone River FIS Profiles

Little Bear Brook FIS Profile

Little Bear Brook FIS Profiles Without Millstone River

Little Bear Brook FIS Profiles Without and With Millstone

Little Bear Brook FIS Profiles Without and With Millstone

Why the Millstone River?

- Much Larger Drainage Area and Flows at Same Ground Elevation
- Downstream Influences?
 - Carnegie Lake Dam?
 - Delaware & Raritan Canal Culvert?
 - Route One Bridge?

Carnegie Lake Dam – April 31st

Carnegie Lake Dam – May 1st

Millstone River HEC-RAS Computer Model at Route One

- Based Upon NJDOT HEC-RAS Computer Model of 2009 Replacement Bridge
- Some Bridge Parameters Modified to Better Match Bridge Type
- Results Checked with May 1, 2014 High Water Elevations

Millstone River HEC-RAS Model

Millstone River at Route One

Potential Mitigation Strategies

- Investigation to <u>Estimate</u> Strategy's <u>Potential</u> to Reduce Flood Risk
- Investigation to be Based Upon Existing Available Study Data
- Objectives of Investigation are to Both Identify Strategies That:
 - Have Potential to Reduce Flood Risk
 - Do Not Have Potential to Reduce Risk

Potential Mitigation Strategies

- Potential Strategies to be Investigated Include:
 - Reduce Millstone Flows via Upstream Storage
 - Lower Downstream Starting WS Elevations
 - Increase Route One Bridge Capacity
 - Levees, Floodwalls, and Road Raisings
 - Enhanced Flood Warning System
 - Wet and Dry Structure Floodproofing

- Flood Assessment Study Based Upon:
 - New Topographic Mapping
 - Property Owner Questionnaires
 - Interviews with Township Officials
 - Structure Elevation Surveys
 - FEMA and NJDEP Waterway and Flood Plain Data and Models
 - Rainfall and High Water Data for May 1, 2014 Rainfall and Flood Event

Findings to Date Include:

- Road, Yard, and Parking Lot Flooding Most Chronic (2 to 5-Year+ Frequency)
- Structure Flooding Occurs During Larger, Less Frequent Events (10 to 25-Year+ Frequency)
- Millstone River is Primary Flooding Source
- Little Bear Brook may Worsen Problem During Extreme Events (50 to 100-Year+ Frequency)

- Potential Strategies to be Investigated Include:
 - Reduce Millstone Flows via Upstream Storage
 - Lower Downstream Starting WS Elevations
 - Increase Route One Bridge Capacity
 - Levees, Floodwalls, and Road Raisings
 - Enhanced Flood Warning System
 - Wet and Dry Structure Floodproofing

 Objectives of Investigation are to Both Identify Strategies That:
 Have Potential to Reduce Flood Risk
 Do Not Have Potential to Reduce Risk

Redevelopment Area Regional Stormwater Management Plan Update

Project Goals & Scope of Work

- Goal 2: Redevelopment Area Regional Stormwater Management Plan
 - Public Meetings
 - Aerial Topographic Mapping
 - Maps and Overlays
 - Regional Stormwater Analysis
 - Conceptual Basin Locations and Designs
 - Potential Little Bear Brook Flood Relief
 - Final Report and Presentation

Redevelopment Area Regional Stormwater Analysis

- Build-out Analysis Results
- Conceptual Basin Location Discussion
- Review of Next Steps to Progress Conceptual Designs

Build-out Analysis

- Analyzed runoff in HydroCAD for existing conditions and fullbuildout of the redevelopment area
- Regional Stormwater BMP
 - ~7 acres, 3 foot depth
 ~4 acres, 6 foot depth

- Included environmental constraints
 - T&E Habitat
 - Soils (including depth to SHWT)
 - Geology
 - Wetlands and Transition Areas
 - Floodplain

Conceptual Basin Locations

Conceptual Basin Locations

Review of Next Steps to Progress Conceptual Designs

- Finalize Conceptual Basin Locations
- Complete field investigation
- Prepare preliminary engineering design plans
- Final report

Princeton Hydro, LLC 1108 Old York Road P.O. Box 720 Ringoes, New Jersey 08551 908-237-5660 princetonhydro.com

Storm Water Management Consulting, LLC 1108 Old York Road P.O. Box 727 Ringoes, New Jersey 08551 908-806-7700 swmconsulting.com